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1

Introduction

”The best time to do an experiment is after you’ve done it.” - R.A. Fisher

1.1 Introduction

1.1.1 System Identification
The ability to construct an accurate parametric mathematical model that exactly describes
(or effectively mimics) the behaviour of a dynamical system is an important goal in many
fields of science and sociology, mainly because such a model can predict the future state
of the system. This is for instance important in an oil refinery, where an accurate model
can be used to control the process such that product specifications are met. An example of
a dynamical system is shown in Fig. 1.1. An input signal enters the system and a noise-
corrupted output is returned. This output may be fed back to the system through a feedback
mechanism. The reference signal can be constructed and applied by the user. A system is
in open loop (closed loop) when no feedback (feedback) is present. For open-loop systems
the user can manipulate the input, whereas for closed-loop systems the reference signal can
be manipulated.

Finding mathematical models that describe dynamical systems is the subject of System
Identification. Ljung (2008) provides the following definition:

”System Identification is the art and science of building mathematical models of dynamical
systems from observed input-output data.”

The subject comprises the following main steps (see also Ljung (1999)):

1. Model Classification. The first step is to find the class of parameterised models
that contains either the exact or an approximate representation of the behaviour of
the dynamical system. This can be realised using for instance first-principles mod-
elling, where the process is described by the laws of physics. (From these governing
equations the model structure follows.) Other possibilities are black-box and grey-
box modelling. In the former case no physical knowledge is available or simply
discarded, and a (possibly) high-order parametric model is employed to capture the
dynamics of the system. In the latter case the model is hybrid: it contains both

1



2 Chapter 1 Introduction

system

feedback

input
output

noise

reference
signal

+
-

+

Figure 1.1: An example of a closed-loop system that is frequently used in System Identification.

first-principles (structured) and black-box (unstructured) components1. The true
dynamical system is for all model classes defined by the parametric model using the
parameter vector θ0, i.e., the parameter vector that best represents the true system.
It is also referred to as the true parameter vector.

2. Experiment Design. This step occurs prior to the actual identification experiment.
In it, the experiment length, the signals that need to be measured, and the sampling
time are chosen. Furthermore, the reference or input signal that needs to be applied
to the system is designed.

3. The Identification Experiment. The identification experiment is performed by ap-
plying the designed signal to the system, and input and output data is collected. In
this step, the measured signals are corrupted by noise due to random disturbances
acting upon the system.

4. Parameter Estimation. Using an identification criterion, usually quadratic, the pa-
rameters in the model that best represent the dynamic behaviour of the system are
identified using the collected data obtained in the previous step. The parameter esti-
mate is denoted by θ̂N .

5. Validation. This last step is used to decide whether or not the identified model is
acceptable. Part of the validation step is to compare the output simulated with the
identified model to the measured output of the true system. Ideally, one should
compare these outputs over a time window that does not overlap with the one that is
used for the purpose of identification. Many other validation techniques can also be
considered.

The parameter estimate θ̂N of the identification procedure in step 4 is a random variable
- a consequence of the noise-corrupted measurements obtained in step 3. Repeating the
identification experiment thus leads to a different estimate. Under conditions that will be
revealed in a next chapter, θ̂N is normally distributed around the true parameter vector θ0.
Due to the random nature of the estimate θ̂N , the field of System Identification is concomi-
tant with statistical methods. We refer to the books of Eykhoff (1974), Goodwin and Payne
(1977), Söderström and Stoica (1989), Walter and Pronzato (1997), and Ljung (1999) for
many time-domain system identification techniques; and Pintelon and Schoukens (2001)
for a frequency-domain approach. In this thesis, we will consider only linear systems with
a single input and a single output, also called linear SISO systems. Furthermore, we will
assume that the model structure is known, or that it can be derived.

1In some literature, a grey-box model is defined as a model containing only parameters with a physical
representation.
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Figure 1.2: The boundary of a two-dimensional confidence ellipse θTP −1
θ θ ≤ 1 centered at θ = θ0 = (0,0)T is shown in blue.

The lengths of the principal axes of the ellipse are equal to the reciprocals of the square roots of the eigenvalues λi of the matrix
P −1

θ , and are depicted in red. The estimate θ̂N will lie inside this ellipse with probability α ≈ 0.39 (corresponding to χ2
α (2) = 1).

The main body of this thesis is concerned with step 2 in the identification procedure:
Experiment Design. In the following section the main concepts of experiment design are
introduced. We explain its importance in the field of System Identification and provide a
non-exhaustive overview of the existing literature. This will also serve the purpose of re-
vealing the limitations of current Experiment Design methods. We will then proceed with
defining the research goal of this thesis.

1.1.2 Experiment Design
In the previous section it is mentioned that the parameter estimate θ̂N resulting from the
parameter estimation step (step 4) is a random variable. Under conditions that will be
revealed in Chapter 2, the estimate is normally distributed around the true parameter vector
θ0, with a covariance matrix denoted by Pθ. For the sake of simplicity, let us assume that
θ0 = 0. Then, as will be formally derived in the next chapter, the estimate θ̂N lies with
probability α inside the confidence ellipsoid θTP−1

θ θ ≤ χ2
α(κ), where κ = dim(θ) and

χ2
α(κ) the α-percentile of the χ2-distribution with κ degrees of freedom. The inverse

covariance matrix P−1
θ influences the size and orientation of the confidence ellipsoid. A

two-dimensional illustration is provided in Fig. 1.2. It will be shown in a future chapter
that Pθ is in fact a function of

• the input signal-to-noise ratio (SNR), and

• the system’s sensitivity to small variations in model parameters and, in particular,
its frequency response.

These two components of the covariance matrix depend on the distribution of the input
signal power over the considered frequency range (determined by the bandwidth of the
system). The SNR and the system’s sensitivity to small variations in model parameters
therefore dictate the volume and orientation of the confidence ellipsoid. For instance,
a high SNR and sensitivity lead to a small confidence ellipsoid and thus more accurate
parameter estimates. These two effects are conceptually explained in Figs. 1.3 and 1.4.
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Figure 1.3: Pictures with a low SNR (left panel) and high SNR (right panel) are shown. Notice that a high SNR delivers a much
clearer picture, and eases the identification of the objects displayed. In the right panel, we indeed observe the initials A.M.R.C.
that are (almost) invisible in the left panel.
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Figure 1.4: Two identical thermometers up to a different liquid and temperature scale are shown. A temperature change ∆T
induces a change in liquid height of ∆hA and ∆hB for respectively thermometer A and B. Suppose we had the task to accurately
measure the outdoor temperature, predicted to fluctuate between 10◦C and 15◦C, and that we had to decide whether to use
thermometer A or B. It is apparent that thermometer B is better suited for the task since the reference value interval on the scale
is smaller on thermometer B. Hence, if we would ask many people to read of the temperature on thermometer A and B, the
variance of the collection of temperature measurements would be lower when using B. The underlying question then obviously
is: why is B suited with a better temperature scale than A? The answer is that the thermometers have liquids with different
expansion coefficients. Let ∆hi be the increase in height of the liquid in thermometer i ∈ {A,B} upon a temperature increase
∆T . Define the sensitivity Si = ∆hi/∆T . Clearly, then, if SB > SA the liquid column in thermometer B rises more than the liquid
column in thermometer A upon the same temperature change ∆T . Stated differently, we can distinguish between small changes
in temperature more clearly and with more confidence when using thermometer B. In conclusion, a high sensitivity Si leads to
more accurate temperature measurements.

It is the dependence of the estimate’s covariance matrix on the input signal that under-
lies the benefit of doing experiment design. Indeed, designing an input signal containing
an optimal set of frequencies can lead to a more precise estimate compared with a white-
noise input signal of the same power2. Conversely, an equally-precise estimate can be
obtained with less power compared with e.g. a white-noise input signal.

We will now give a short historical overview of Experiment Design methods and their
aims.

2A white-noise input signal is characterised by a power spectrum that is flat, i.e., the signal power at each
frequency is equal.
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Early Works in Experiment Design

One of the earliest reports on experiment design is due to J.D. Gergonne in 1815 on lin-
ear regression problems; see Gergonne (1974) for a republished version of his work, and
Pierce (1876) for another notable contribution. These works considered the least squares
criterion to estimate the parameters in a polynomial function used to ”fit” experimental
data. Extensions in regression problems are due to Federov (1972); St John and Draper
(1975); Kiefer (1959); Kiefer and Wolfowitz (1959, 1960); Kiefer (1961); Karlin and Stud-
den (1966); Whittle (1973). Their research can be connected to open-loop dynamical
systems with linear-in-the-parameters models, e.g., Finite Impulse Response (FIR) and
Orthonormal Basis Function (OBF) models (although the latter model type did not exist at
that time).

The development of experiment design for dynamical systems (and thus System Iden-
tification) started to gain traction in the 1960s with contributions from Levin (1960) for
linear time-invariant systems and Levadi (1966) for a linear time-varying system. In
the 1970s work on optimal experiment design theory for multiple-input multiple-output
(MIMO) systems (Mehra (1973, 1974a)) and general continuous-time linear SISO mod-
els were considered. In particular, upper bounds were sought on the number of spectral
lines required in the optimal input signal. This quest led to some beautiful mathemati-
cal contributions in experiment design (Payne and Goodwin (1974); Zarrop (1979)). For
instance, Mehra (1974a) showed that the sample-averaged inverse covariance matrix can
be generated with at most κ(κ +1)/2+1 discrete frequencies, where κ is the number of
unknown parameters. This number can be reduced to only 2κ−1 for parametrically dis-
joint systems (i.e. where the dynamical system and noise model do not share parameters),
see Payne and Goodwin (1974). Sequential non-convex numerical algorithms were fur-
thermore developed to find optimal input signals for open-loop problems (Zarrop (1979);
Javaherian (1974)). Javaherian (1974) computed optimal input spectra for a specific opti-
misation problem and found that for many systems the optimal input signals only required
(κ +1)/2 spectral lines, corresponding to the number required for a persistently exciting
input signal (Ljung (1971)).

The optimisation problems that were considered in the above works were of the form:

max
input

Accuracy Measure on the Estimated Parameter

subject to
Power or Energy Constraints on Signals,

where the accuracy measure and power (or energy) of the system are both a function of
the power spectrum of the input signal. Hence, that power spectrum was sought that
maximised the accuracy measure under the constraint that the power of the signal did
not exceed a user-defined value. The above optimisation problem is quite pervasive in
literature.

Oft-considered functionals ofP−1
θ defining the accuracy measure are reported in Table

1.1. We elaborate on these accuracy measures to give a conceptual understanding of the
above optimisation problems. Minimising the sum of the parameter variances corresponds
to maximising −Tr(Pθ), where Tr(·) is the trace operator. The associated objective func-
tion in the above optimisation problem is called the A-optimality criterion. Even though
the sum of variances is minimised in this type of optimisation problem, it may happen
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Optimality criterion Measure Interpretation

A-optimality −Tr[Pθ ] Sum of parameter variances
D-optimality det[P−1

θ
] Inverse of the volume of confidence ellipsoid

E-optimality λmin[P−1
θ

] Largest principal axis of confidence ellipsoid
Table 1.1: Some optimality criteria used as accuracy measure in optimisation problems with a constraint on power or energy of
the input signal.

that one of the parameter variances is very large. A D-optimality criterion is used in the
above optimisation problem when maximising the determinant of P−1

θ is of importance.
Since the volume of the confidence ellipsoid is inversely proportional to the square root of
det(P−1

θ ), the D-optimality criterion corresponds to the minimisation of the volume of the
confidence ellipsoid. Although this may seem as a good measure to increase the overall ac-
curacy of the estimate θ̂N , it may occur for particular systems that the confidence ellipsoid
is ill-shaped, as remarked by Emery and Nenarokomov (1998). This happens for instance
if one of the principal axes of the confidence ellipsoid is not minimised as effectively as
the others at the optimal input signal frequencies, resulting in a confidence ellipsoid be-
ing fat in one direction yet thin in others. Minimising the ellipsoidal volume can thus
be misleading in some cases. Such situations can be avoided with the E-optimality crite-
rion. It minimises the largest principal axis of the confidence ellipsoid, and thus maximises
λmin(P

−1
θ ) (see for example Fig. 1.2, where the largest axis is inversely proportional to the

smallest eigenvalue of the inverse of the covariance matrix.). The D-optimality criterion
is probably most often used, mainly due to the fact that the computation of a gradient of
a determinant is straightforward (gradients are important for fast numerical convergence
of the optimisation algorithm). The E-optimality criterion is used in Optimal Experiment
Design literature, but is less abundant than the D-optimality criterion. It also appears in
the sensitivity analysis of structural systems (Haug et al. (1986)), although the goal there
is optimal structural design, not parameter estimation.

1990s till State-of-the-Art

The selection of the accuracy measure in the optimisation problem defined in the previous
section is to some extent arbitrary, except for κ = 1, in which case the A-, C-, and D-
optimality criteria are identical. For κ > 1, the selection of an appropriate measure should
be connected to the user’s goal with the identified model. However, in the previously
mentioned literature no such connection has been made.

This changed with the derivation of the asymptotic expression of P−1
θ of the param-

eter estimate for a general linear SISO system in the frequency domain by Ljung (1985),
leading to the development of identification for control. For this purpose, experiments
are designed for model-based control. The parameter estimate resulting from such exper-
iments should be of sufficient quality to ensure high closed-loop performance when used
in model-based controllers (Model Predictive Controllers, for instance). At the same time,
the experiment should not disrupt the nominal closed-loop operations too much. Hence,
in this setting - and in contrast to the optimisation problem introduced previously - the ex-
periment cost should be minimised subject to a constraint on the quality of the parameter
estimate, i.e.

min
input

Cost of Identification Experiment
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subject to
Accuracy Constraints on Parameters.

This optimisation problem is loosely speaking the inverse of the previous one as the ob-
jective function and constraint are swapped. In experiment design literature, it is called
a dual problem. In this optimisation problem, the cost and accuracy constraint are also
a function of the power spectrum of the input signal. The power spectrum is the design
variable in the problem.

One of the first optimisation problems of this type is formulated by Bombois et al.
(2004) in which the concept of Least-Costly Experiment Design (LCED) is introduced;
see (Bombois et al. (2006)) for more details. The cost of the experiment is a function of
perturbations added to the input and output signals caused by the added excitation sig-
nal. The accuracy constraint, a function of the input spectrum of the excitation signal, is
connected to the model quality and the intended use of the model.

The LCED framework has been extended by Hjalmarsson (2005), who introduced
Applications-Oriented Experiment Design (AOED), in which different cost functions and
accuracy constraints are formulated. The optimisation problems in this framework lead
to input designs that result in experiment data sets that reveal the important system prop-
erties for the purpose of control, and consequently, estimates that yield good closed-loop
performance when used in model-based controllers.

The optimisation problems formulated in (Bombois et al. (2004); Hjalmarsson (2005))
have costs and constraints that are affine in the power spectrum of the to-be-designed in-
put signal, and can be solved with convex numerical algorithms (Boyd and Vandenberghe
(2003)). To solve the problems numerically, the power spectrum needs to be parame-
terised. This can be done by using either finite-dimensional spectrum parametrisation
(e.g. a multi-sine or filtered white-noise signal) or partial correlation parametrisation. In
case of the former, the spectrum falls within the class containing e.g. multi-sine or filtered
white-noise spectra. Consequently, slightly suboptimal solutions may be found. The sec-
ond method considers all possible spectra and therefore the optimisation problem finds the
optimal solution; see the work of Jansson and Hjalmarsson (2005) for details.

The majority of these works has been formulated in the frequency domain in which the
problems are convex. However, important problems cannot be solved in this domain. For
instance, time-domain constraints like bounds on the amplitudes of the input and output
signals can not be considered, although these are highly relevant in many practical situa-
tions. Recently, works have appeared that do take time-domain constraints into account, at
the expensive of losing convexity (or by using convex relaxations). MPC-X introduced by
Larsson et al. (2011) alters the model predictive controller (MPC) by adding a constraint
that ensures good model quality while respecting the input and output amplitude bounds
set in the MPC; a method that is currently limited to output error (OE) models. A modi-
fied version of this method, restricted to open-loop systems, is presented in Ebadat et al.
(2014b) (see also Larsson (2014) and references therein) in which the minimal required
experiment time is found that satisfies both parameter accuracy constraints and amplitude
bounds, using a convex relaxation method introduced by Manchester (2010). This formu-
lation is used to maximise the information content in the experiment data for the intended
model use. Manchester (2009) introduced an input design method for D-optimal problems
with signal amplitude constraints for the class of multi-sine signals based on an algorithm
due to Guillaume et al. (1991), although no accuracy constraints are imposed. Manchester
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(2009) showed that the additional degree of freedom in the selection of the phases of the
multi-sine signal for time-domain problems can be exploited to increase the information
density in the experiment data for the purpose of identification.

1.2 Limitations of the State-of-the-Art

From the literature overview presented in Section 1.1.2 we extract here the following lim-
itations of the Least-Costly Experiment Design framework.

Firstly, the vast majority of the LCED problems consider black-box (unstructured),
discrete-time models that are finite and rational. However, there are many physical sys-
tems, i.e. structured systems, that have continuous-time formulations. For instance, diffu-
sion -advection-reaction processes can be modelled by linear Partial Differential Equations
with constant coefficients. The latter processes can be represented by continuous-time ir-
rational, infinite-order transfer functions and contain - contrary to unstructured system -
only a few parameters that require estimation. The LCED framework is currently only
formulated for discrete-time unstructured systems, and is therefore unable to handle phys-
ical systems in general. Problems not present in the unstructured systems that need to be
accounted for when generalising the LCED framework to structured systems are (i) the
order-of-magnitude difference in the physical parameter values, (ii) the discretisation of
the physical continuous-time system and their simulation, and (iii) the additional degrees
of freedom in the experiment set-up (e.g. actuator and sensor locations) that impose sig-
nificantly longer computational times as the LCED problem has to be solved for many
possible values of the degrees of freedom.

Secondly, the LCED framework relies heavily on convex numerical algorithms. This
dependence is a strength but also a weakness of the framework. Its strength is that optimal
input signals can be designed for systems with an arbitrary but finite number of to-be-
identified parameters. However, the solutions of the numerical algorithms do not provide
any interpretation nor understanding of the underlying mechanisms that determine the op-
timal frequencies and amplitudes of the optimal input signal. Furthermore, the correctness
of these numerical solutions (i.e. whether or not they are indeed the correct solutions of
the optimisation problem) cannot be tested against analytical solutions, as the latter do not
exist in general.

A third limitation is that the vast majority of the problems tackled in these frameworks
are only applicable to arbitrary closed-loop systems as long as the controller is known and
linear time-invariant. This limits the scope of the frameworks enormously, since many
real-life industrial processes use nonlinear controllers. Although solutions for systems
regulated by nonlinear controllers exist in the literature (Larsson et al. (2011); Ebadat
et al. (2014b); Larsson (2014)), they are all - in one way or another - restricted to specific
classes of systems.

The last limitation is as follows. In the LCED framework, the cost function (objective
function) in the optimisation problems is of the form of a weighted input spectrum, and
the parameter accuracy constraints are Linear Matrix Inequalities (LMIs) affine in the in-
put spectrum. The reason for this formulation is that the optimisation problem is convex,
and can therefore be efficiently solved with numerical methods. However, this is only one
possible formulation. Indeed, many other possibilities relevant for real-life processes can
be considered. For instance, instead of minimising a weighted input power, it might be
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relevant to minimise the total experiment time. (The cost is thus experiment time and not
a (weighted) input power). Furthermore, many real-life processes are subject to product
quality constraints, imposing amplitude bounds on the time-domain input and output sig-
nals. Consequently, a relevant problem formulation is to minimise the experiment time
subject to parameter accuracy constraints and system constraints, where the latter are e.g.
input and output amplitude bounds. Such a formulation was recently formulated for open-
loop systems by Ebadat et al. (2014b). System constraints are usually imposed for safety or
product quality reasons. Consequently, they may influence the economic impact of the ex-
periment. Therefore, these constraints are sometimes referred to as economically-relevant
constraints.

1.3 Problem Statement and Approach
The limitations revealed in the last section show that there exist more LCED problem
formulations than the classical one introduced by Bombois et al. (2006), and that the cur-
rent framework cannot be applied to all systems. Figure 1.5 gives a high-level schematic
overview of many possible LCED problems, defined through the steps I until IV. The clas-
sical LCED problem is solvable for unstructured systems (I) without degrees of freedom
in the experiment set-up (II)3, which are either in open loop, or in closed-loop with a
known linear time invariant (LTI) controller, and for which an optimisation problem (IV)
is solved that minimises a weighted input power subject to parameter accuracy constraints.
In this classical LCED problem, the set of design variables Ξ only contains the input power
spectrum, and no system constraints are considered.

It is clear from Fig. 1.5 that the classical LCED framework can only solve a limited
number of problems. Indeed, a LCED problem consisting of a structured system (I), with
possible degrees of freedom in the experiment set-up (II), and which is in closed loop with
an unknown or a nonlinear controller (III), has not been investigated. Furthermore, choos-
ing experiment time as the experiment cost, or imposing additional system constraints,
have not been considered in full generality (IV).

In light of the above limitations and observations, the research question of this thesis
is formulated as follows.

How can the current Least-Costly Experiment Design framework be extended
to include structured and unstructured linear systems regulated by nonlinear
controllers while incorporating economically-relevant constraints during exper-
imentation?

Before describing our approach to address this question, let us first clarify some termi-
nology. We consider a system to be structured when its dynamics are described by first
principles models (i.e. models containing physical parameters). A structured system may,
depending on the application, be in open or closed loop containing unknown linear or
(possibly unknown) nonlinear controllers. An economically relevant constraint can be, for
instance, amplitude bounds on input and output signals of a system.

In order to address the research question, the following approach is taken. From Fig. 1.5
we observe that in order to extend the LCED framework, the to-be-developed techniques

3We recall that by degrees of freedom in the set-up, we refer to e.g. actuator and sensor locations.
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Structured	and	Unstructured	Systems	(PDEs,	ODEs,	networks)

with or without

degrees	of	freedom	 in	experiment	set-up

in

Open	Loop Closed	Loopor

by solving the optimization problem

Accuracy constraint

System Constraints

subject to

and optional

min
⌅

Experiment cost

Design optimal input signal and experiment conditions for:

I.

II.

III.

IV.

MPC LTI Nonlinear Unknown

Figure 1.5: This diagram shows the type of experiment design problems that should be solvable. The aim is to solve the
optimisation problem IV for any structured or unstructured system, with or without degrees of freedom in the experiment set-up,
and that can be in either open- or closed-loop. The symbol Ξ indicates the set of design variables in the optimisation problem,
which usually contains only the input spectrum Φr , but can also include degrees of freedom of an experiment set-up.
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should, in conjunction, be able to solve more of the problems (I)-(IV) than currently pos-
sible. Specifically, we should extend the Least-Costly Experiment Design framework to
(1) linear structured systems with additional degrees of freedom in the experiment set-up,
(2) (un)structured linear systems that are in closed loop with an arbitrary controller, and
by (3) considering different economically relevant constraints. In addition to these exten-
sions, we should also (4) provide generic analytical solutions for some LCED problems.
The analytical solutions will provide understanding of the numerically generated ones,
as mentioned in the previous section. We now discuss in detail the approaches taken to
address the points (1)-(4).

Find generic analytical solutions for some LCED problems

In Section 1.2 it has been mentioned that the LCED framework suffers from the lack of
analytical solutions of its optimisation problems. The motivation for addressing point (4)
above is that analytical solutions can be very helpful, even though existing numerical al-
gorithms can already solve the LCED optimisation problems for systems with an arbitrary
number of to-be-identified parameters.

First, analytical solutions will expose the mechanisms that are important to minimise
the cost while ensuring that parameter accuracy constraints remain satisfied. Consequently,
they will provide interpretation of the optimal frequencies and amplitudes that are con-
tained in the optimal input signal.

Second, analytical solutions can speed up the numerical algorithms enormously by
e.g. hardcoding them. This, as we shall see in a future chapter, is in fact very useful
when not only the input spectrum is designed, but also the degrees of freedom in the
experiment set-up. Indeed, in such cases, a LCED problem has to be solved for many
possible combinations of values of the degrees of freedom. This leads to a computational
burden that can be avoided with analytical results.

Despite these positive features of analytical solutions, one decade after the first formu-
lation of the LCED problem no generic solutions have been calculated. To this end, we
take in this thesis a first step towards finding such solutions. We will find analytical solu-
tions for uni- and bi-parametric models, i.e., models in which only one or two parameters
are unknown (but multiple occupancy in the model is allowed).

Develop LCED methods for systems with arbitrary controllers

Our approach in tackling point (2), i.e. generalising the LCED framework such that it can
be applied to (un)structured closed-loop systems with arbitrary controllers, is as follows.

At a technical level, as will be explained in Chapter 5, the LCED problem requires an
explicit expression of the LTI sensitivity function, which appears in the covariance matrix
expression of the parameter estimate vector. In the case of unknown linear controllers, or
(possibly unknown) nonlinear controllers, the sensitivity function is unknown or not LTI.
In these cases, the LCED problem cannot be solved. Due to this limitation, we develop in
this thesis methods that extend the framework to include other types of controllers.

To this end, we will introduce the novel Stealth and Sensitivity methods to circum-
vent the requirement of knowing the sensitivity function. The former method changes the
classical closed-loop identification scheme such that the excitation signal is no longer ob-
served by the controller. As will be shown later, this new identification scheme leads to a
covariance matrix expression that is no longer a function of the sensitivity function. The
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latter method uses the classical closed-loop identification scheme, and approximates the
sensitivity function using prior data. This approximate function will then be used in the
covariance matrix expression, such that the LCED problem can be solved with existing
numerical methods.

Generalise the LCED framework to structured systems with degrees of freedom in
the experiment set-up

The LCED framework has been formulated for discrete-time, black-box (unstructured)
systems. However, as already mentioned in Section 1.2, much less attention has been
given to physical (structured) systems. This may be due to the fact that such systems
are formulated in continuous time, and are driven by partial differential equations (PDEs).
Indeed, both differences with unstructured systems make the identification and experiment
design problem more difficult.

In this thesis, we will incorporate physical systems driven by linear PDEs with constant
coefficients in the LCED framework; hereby addressing point (1) mentioned previously.
To this end, we show how to properly simulate these physical systems for the purpose
of parameter identification. Furthermore, we show how discrete-time models explicit in
the physical parameters can be obtained from the continuous-time PDE equations. These
discrete-time models can then be used in the LCED framework. Problems such as stability
and ill-shaped covariance matrices will be addressed. Additionally, we will introduce an
algorithm that can efficiently deal with the degrees of freedom in the experiment set-up
that are concomitant with many physical systems. A case study furthermore reveals the
strength of the LCED optimal excitation signals compared to e.g. white noise excitation
signals.

Incorporate other cost definitions and economically-relevant constraints in the LCED
framework

We have mentioned in Section 1.2 that the cost function in the LCED framework is formu-
lated as a weighted input power, whereas in practice other ones might be more relevant.
Furthermore, we have also mentioned that next to parameter accuracy constraints, other
ones are important.

We address this limitation, and thus point (3), as follows. We consider a LCED prob-
lem, first formulated by Ebadat et al. (2014b), in which the experiment length is minimised
subject to a parameter accuracy constraint and system constraints. The latter type of con-
straints can be e.g. input and output amplitude bounds (and can be seen as economical
constraints). This optimisation problem is no longer convex, in sharp contrast to the clas-
sical LCED problem formulations. To this end, we will design the amplitudes and phases
of a multi-sine input signal containing fixed frequencies. This is also the main difference
with the work of Ebadat et al. (2014a), where the signal is limited to be a stationary process
with finite memory and alphabet. In (Ebadat et al. (2014b)) this restriction is not present,
but the approach cannot be used for closed-loop identification, unlike the method that is
introduced in this thesis. Our method can be applied to open- and closed-loop systems and
can treat the general case of multiple accuracy constraints, in contrast to existing methods
in the literature. We will illustrate the strength of our non-convex method with three nu-
merical examples. These clearly show that the new methodology can lead to much shorter
experiment lengths than the classical formulation (under the exact same constraints).
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Apply the new techniques to a relevant problem in petrophysics

The novel LCED formulation mentioned above is applied to an important problem in
petrophysics. This problem pertains to the estimation of the porosity and permeability val-
ues of a porous sample using pressure oscillation experiments. These parameter estimates
are e.g. used to calibrate reservoir models, and therefore need to be precise. However, it
is clear from the literature that obtaining accurate estimates is a challenge. Furthermore,
these lab experiments are expensive mainly due to the required presence of a skilled engi-
neer. Reducing the experiment time is therefore paramount to keeping such experiments
viable.

In this thesis, we consider the LCED problem of minimising the experiment time of
such experiments under parameter accuracy constraints and bounds on the actuator am-
plitude of the experiment set-up, by designing the input spectrum of the actuator. As will
become clear in Chapter 7, these lab set-ups also have two degrees of freedom. We thus in
fact solve the optimisation problem by simultaneously designing the optimal input spec-
trum and the degrees of freedom. We tackle this optimisation problem analytically (to a
large extent). We will show that the experiment times of these type of experiments can be
drastically reduced when employing optimal experiment design.

1.4 Organisation of this Thesis
This thesis consists of nine chapters in total, five of which provide solutions to the four
goals set in the previous section. The novel techniques that will be presented in these
chapters are introduced separately, but we stress that these can be used in conjunction to
address many of the problems (I)-(IV) in Fig. 1.5.

Chapter 2 describes existing time-domain System Identification techniques, particu-
larly the Direct and Indirect Identification methods.

Chapter 3 describes the classical Least-Costly Experiment Design framework. It shows
how the problems in this framework are solved numerically, and provides explanation and
examples of several types of frequently considered problems. New in this chapter is a ge-
ometric interpretation of some LCED problems. The notations and techniques introduced
in Chapters 2 and 3 will be used in the remaining chapters.

Chapter 4 addresses goal (4) set in Section 1.3. We shall derive analytical solutions for
the LCED problem formulated in Chapter 3 for uni- and bi-parametric systems and discuss
their uniqueness. Parts of this chapter are published in (Potters et al. (2015)) and (Potters
et al. (2016a)).

Chapter 5 introduces the Stealth and Sensitivity Methods, addressing goal (2) in Sec-
tion 1.3. Both methods generalise the LCED framework such that it can be used for linear
systems regulated by arbitrary controllers. This chapter includes several numerical studies
in which the methods are applied to a linear system regulated by an MPC, a linear system
regulated by a nonlinear controller, and a dynamical network. The chapter is partly based
on the article (Potters et al. (2014)).

Chapter 6 addresses goal (1) set in Section 1.3 and introduces a method that generalises
the LCED framework such that it can be used for structured systems driven by linear
partial differential equations with constant coefficients. An efficient numerical algorithm
is developed that can deal with degrees of freedom in the experiment set-up. It also shows
how to efficiently and correctly simulate such systems, which is required for parameter
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estimation. A case study is provided to show the benefit of experiment design over white-
noise experiments. Parts of this chapter are published in (Potters et al. (2016a)).

In Chapter 7 we apply optimal experiment design to a problem in petrophysics. The
problem pertains to the estimation of the physical parameters permeability and porosity
in a so-called Pressure Oscillation Experiment. We show in this chapter how to minimise
the experiment time while respecting amplitude bounds on the actuator of the experiment
set-up, as well as respecting bounds on the variances of the two physical parameters. We
furthermore compare results between the Direct and Indirect Identification method. The
chapter is based on the article (Potters et al. (2016c)).

Chapter 8 introduces a novel algorithm that is applicable to structured and unstructured
systems, and addresses goal (3). This algorithm finds the minimal required experiment
time such that parameter accuracy constraints and signal amplitude bounds are satisfied.
Part of this chapter is published in (Potters et al. (2016b)).

In Chapter 9 conclusions are drawn and recommendations for future research are pro-
vided.
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The Basics of Prediction Error
Identification

”With four parameters I can fit an elephant, and with five I can make him
wiggle his trunk.” - J. Von Neumann

2.1 Introduction
In this chapter we describe known, basic techniques of system identification for single-
input single-output (SISO) systems. These techniques can be generalised and extended to
more complex systems, e.g. a network of systems, multiple-input multiple-output (MIMO)
systems, and bilaterally-coupled systems.

At the core of each real system lies a continuous-time system G0(s) that we would
like to identify, see Fig. 2.1. This model represents the true dynamics of a process that
connects the signal u to the signal y, and is based on its equations of motion. As mentioned
in Chapter 1, an identified model of the system G0(s) can be used to design a controller
for the true system, or to make predictions on the future state of the process, which is
important in e.g. process engineering.

Most processes contain feedback that often has the form of a controller C(z) (designed
by the user) that uses the signal y to adapt the signal u that enters the system. In Fig.
2.1 the time-domain, discrete-time signals r, u, and y are shown. The signal r can be
added to the process by the user. The signal u goes through a Digital-to-Analog converter

DAC ADC C(z) G0(s) 

G0(z) 

+ 
- 

r 
u y 

Figure 2.1: A continuous-time system G0(s) in closed-loop with a linear, time-invariant controller C(z). The signals r, u, and
y are discrete-time. The blocks DAC (Digital-to-Analog Converter), G0(s), and ADC (Analog-to-Digital Converter) define the
discrete-time model G0(z).

15
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before it arrives at the continuous-time process. The continuous-time output that leaves the
system G0(s) then goes through an Analog-to-Digital converter resulting in the discrete-
time signal y1. The DAC, G0(s), and ADC can be regrouped into a single discrete-time
operator: the discrete-time transfer function G0(z) (see Fig. 2.1).

In this chapter we will describe existing techniques that show how the signals r, u, and
y can be used to identify a discrete-time model of the discrete-time transfer function G0(z),
see Fig. 2.1. The identification experiment is however hampered by noise that can enter
the system at various locations. The type of identification method that should be used thus
depends on the type of noise and the locations at which it enters the system.

In the remainder of this chapter, we will describe the Prediction Error Method (PEM),
the Direct and Indirect Identification methods for discrete-time models. In particular, we
describe these for a simple closed-loop transfer function G0(z). In later chapters, these
techniques will also be applied to continuous-time systems, although the concepts remain
the same. The PEM is considered in Section 2.2. Sections 2.2.2 and 2.2.3 present the
Direct Identification Method and a tailored Indirect Identification Method, which are two
different ways to collect experimental data with the aim to identify parameters residing in
a parameterised model. These methods will be used in future chapters.

2.2 Prediction Error Identification

2.2.1 Introduction

The identification framework considered in this thesis is focussed on single-input single-
output (SISO) data-generating systems. A discrete-time data-generating system, also
called the true system, is defined as

S : y[n] = G0(q)u[n]+H0(q)e[n], (2.1)

with y[n] the output signal, u[n] the input signal, e[n] a zero-mean white noise signal with
variance σ2

e , and n ∈ N represents discrete time2. The functions G0(q) and H0(q) are
proper rational functions in the shift operator q, and H0(q) is stable and monic. The shift
operator is defined as qku[n] = u[n+ k], where k ∈ N. The true system is defined by S =
{G0(q),H0(q)}, as these so-called transfer functions determine the dynamic behaviour
of the process. The term H0(q)e[n] represents process and measurement noise. When
H0(q) = 1 the noise is called white and for all other cases coloured.

The input signal in (2.1) is defined by (see Fig. 2.2)

u[n] = r[n]−C(q)y[n], (2.2)

1Although incorrect at a formal level, and with slight abuse of notation, we frequently display the system in
Fig. 2.1 by a transfer function in the s- or z-domain, whereas the signals r, u, and y are in the time domain.
This notation should thus be interpreted as the system being represented by the transfer function displayed in the
block. Furthermore, for notational brevity, the DAC and ADC blocks are often left out with the understanding
that these should be included when doing the actual experiment.

2We deviate slightly from standard notation in System Identification literature as we need to distinguish
between continuous- and discrete-time signals in this thesis. We denote a discrete-time signal with x[n] = x(nTs),
with Ts the sampling time, whereas its continuous-time counterpart is denoted by x(t).



2.2 Prediction Error Identification 17

Figure 2.2: Closed-loop configuration of the true, data-generating system G0(z) regulated by a linear, time-invariant controller
C(q). The input is u[n] and the output y[n] is corrupted by an additive noise v[n] = H0(q)e[n].

where C(q) is a known, linear, time invariant (LTI) controller and r[n] a reference signal.
In a later chapter, we will consider other types of controllers as well. The signal r[n] is also
called an excitation signal, as it is supplied by the user for the purpose of identification.
The controller aims to e.g. reduce the fluctuations in the output due to disturbances by
changing the input u through the control action −C(q)y[n]. The closed-loop configuration
is depicted in Fig. 2.2. Notice that the process noise H0(q)e[n] affects the measurements,
and that it also enters the feedback loop.

In the system identification literature, it is common to assume that the true system lies
in a parameterised set of models, defined by

M : y[n;θ] = G(q,θ)u[n]+H(q,θ)e[n], θ ∈ Rκ , (2.3)

where κ = dim(θ), and G(q,θ), H(q,θ) are proper rational transfer functions depending
on a real-valued parameter vector θ. With the notation S ∈M we imply that for some
θ = θ0 we have that G0(q) = G(q,θ = θ0) and H0(q) = H(q,θ = θ0). Under the assump-
tion S ∈M we see that in order to classify the dynamic behaviour of the data-generating
system, only the parameter vector θ0 needs to be estimated. We make use of this assump-
tion throughout this thesis.

The discrete-time transfer function G(q,θ) in (2.3) is usually a black-box model. This
representation merely serves to accurately simulate the output as a function of the input,
and uses no physical knowledge to define for instance the model structure and order. Con-
sequently, the parameters residing in such models should be interpreted as fitting parame-
ters (that may be implicitly linked to physical ones). On the other hand, a first-principles
model is deduced from the continuous-time governing equations of a process. In this case,
the model structure and order follow immediately from the equations of motion. In such
models the physical parameters appear explicitly. Lastly, a grey-box model consists of
first-principles and black-box model components. This model can be used when some
parts of the dynamics can be easily deduced from the equations of motion, whereas other
parts cannot and therefore need to be modelled in a black-box fashion.

2.2.2 Direct Method
The Direct Identification Method, or in short Direct Method, uses the input u (2.2) and
output y (2.1) of the data-generating system to identify θ0. To this end, a known reference
signal r is applied to the closed-loop system (2.1)-(2.2) and the input u and output y are
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measured and collected in the data set ZN = {u[n],y[n]}N
n=1. In the case of an open-loop

system, i.e. C(q) = 0, a known input signal r = u is applied and the output y is measured.
The data set ZN is used to determine an estimate of θ0 in the full-order model structure

M in the following way. We introduce the prediction error between the measured output
y and its one-step ahead predictor:

ε[n;θ] = H−1(q,θ)(y[n]− ysim[n;θ]) = H−1(q,θ)(y[n]−G(q,θ)u[n]) . (2.4)

In (2.4), we also introduce for further use the symbol ysim[n;θ], which is the simulated
(noise-free) output. It is then a classical procedure to find the best estimate θ̂N of θ0 with
the least-squares criterion (Ljung (1999)):

θ̂N = argmin
θ

1
N

N

∑
n=1

ε
2[n;θ]. (2.5)

Under the assumption S ∈M (c.f. (2.1), (2.3)) it follows that the estimate θ̂N is asymp-
totically normally distributed around the true parameter vector θ0. Hence, under certain
conditions on the excitation signal (and the controller in closed loop), we have for large
N that (θ̂N −θ0) ∼N (0,PN,θ), where PN,θ is the covariance matrix of the estimate θ̂N
that is inversely proportional to the experiment length N. In the limit N→ ∞ the estimate
converges in distribution to the true parameter vector, i.e., θ̂N

d−→ θ0 w.p. 1. As the estimate
is normally distributed around the true parameter θ0 it follows that the ellipsoid

E =
{
θ | (θ− θ̂N)

TP−1
N,θ(θ− θ̂N)≤ χ

2
α(κ)

}
(2.6)

contains the unknown true parameter vector θ0 with probability α . In this expression,
χ2

α(κ) is the α-percentile of the χ2 distribution with κ degrees of freedom, and P−1
N,θ the

inverse covariance matrix.

Assumption 2.1 Notice that from (2.4) and (2.5) that we implicitly assume that the in-
put signal u is either measured without error (no sensor noise), or that the feedback signal
−C(q)y[n] in (2.2) is exactly known. If this assumption is not valid, the identification prob-
lem is in fact an Errors-in-Variables problem, to which different identification techniques
should be applied (Söderström (2007)).

Remark 2.1 The identification method outlined above needs the simulated output as a
function of θ. For discrete time models G(q,θ) the simulation is straightforward. How-
ever, continuous-time first-principles and grey-box models are not functions of the delay
operator q. Consequently, ysim[n;θ] needs to be constructed differently. In Chapter 6 we
show that one can e.g. use an input signal that is a sum of sinusoidal signals to easily
construct ysim[n;θ].

The expression for the inverse of the covariance of θ̂N in (2.6) is given by (Ljung (1999))

P−1
N,θ =

N
σ2

e
E
[
ψ[n;θ]ψT [n;θ]

]
θ=θ0

, (2.7)

which can be estimated from θ̂N and ZN . In this equation, the expectation operator Ē
is defined as Ē f [n] ≡ limN→∞

1
N ∑

N
n=1 E f [n], where E is the usual expectation operator,
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and σ2
e is the variance of the noise e[n] defined in the data generating system (2.1)-

(2.2). Lastly, ψ[n;θ] ≡ −∇θε[n;θ], where ε[n;θ] is the prediction error (2.4), and ∇θ =
(∂/∂θ1, . . . ,∂/∂θκ)

T the parameter gradient operator.

Define the sensitivity function of the closed-loop system (2.1)-(2.2) as

S(q,θ) =
1

1+C(q)G(q,θ)
, (2.8)

and define the short-hand notation in the z-domain: S0(z) = S(z,θ0), where z = e−iωTs ,
and ω is the radial frequency. Expression (2.7) can then be transformed into the frequency
domain using Parseval’s theorem for discrete-time signals and reads (Ljung (1999))

P−1
N,θ[Φr] = P

−1
r,N,θ[Φr]+R0 =

NTs

2πσ2
e

∫
π/Ts

−π/Ts

Fr(e−iωTs)FH
r (e−iωTs)Φr(ω)dω +R0,

(2.9)

in which the subscript H is the Hermitian conjugate, and where the matrix

R0 =
NTs

2π

∫
π/Ts

−π/Ts

Fv(e−iωTs)FH
v (e−iωTs)dω (2.10)

represents the contribution of the noise in closed-loop to the certainty in the parameters.
Furthermore, the vector functions Fr(z) and Fv(z) are given by

Fr(z) = H−1
0 (z)S0(z) [∇θG(z,θ)]θ=θ0

, (2.11)

Fv(z) = H−1
0 (z) [∇θH(z,θ)]θ=θ0

−C(z)S0(z) [∇θG(z,θ)]θ=θ0
. (2.12)

In these expressions Φr(ω) is the power spectrum of the excitation signal r[n] in (2.2). In
the following sections and chapters, we will frequently set Ts = 1 for the sake of notational
brevity. Notice from (2.9) that the inverse of the covariance matrix is in fact the frequency-
averaged accuracy in the parameters over the interval [−π/Ts,π/Ts]

3. It should be stressed
that although the covariance matrix is a functional of the power spectrum of the excitation
signal r, the actual identification (2.5) is done with the collected input u and output y
data. Expression (2.9) plays a central role in experiment design as the covariance matrix
can be altered by designing the spectrum Φr of the excitation signal r. We stress that the
expression of the covariance matrix is here defined for a linear LTI controller; in Chapter
5 we will also consider nonlinear controllers.

2.2.3 Indirect Method

The Indirect Identification Method, or Indirect Method, uses the applied excitation signal
r[n] (2.2) and measured output y[n] (2.1) for the identification of θ0. This is in contrast to
the Direct Method, where the input u[n] and output y[n] were used. The data set in this
case is defined by ZN = {r[n],y[n]}N

n=1. Substituting (2.2) into (2.1) and using (2.8) shows

3Indeed, the average value of a function f (x) over the interval [a,b] is given by < f (x)>= 1
b−a

∫ b
a f (x)dx.
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that the prediction error for the Indirect Method (c.f. (2.4)) reads

ε[n;θ] = H−1
IM (q,θ)(y[n]−GIM(q,θ)r[n]) , (2.13)

where

HIM(q,θ) = S(q,θ)H(q,θ), (2.14)
GIM(q,θ) = S(q,θ)G(q,θ), (2.15)

and G(q,θ), H(q,θ), S(q,θ) are defined in (2.3), (2.8). The estimate θ̂N is found with ZN
and (2.5), in which instead (2.13) should be used for the prediction error.

The inverse covariance matrix for the Indirect Method is calculated along the same
lines as for the Direct Method. The expression is given by (2.9) in which instead

Fr(z) = H−1
IM (z,θ0) [∇θGIM(z,θ)]θ=θ0

, (2.16)

Fv(z) = H−1
IM (z,θ0) [∇θHIM(z,θ)]θ=θ0

. (2.17)

2.2.4 Comparison

Let us compare the two identification methods. The Direct Method uses the data ZN =
{u[n],y[n]}N

n=1. The input data contains all the measured feedback dynamics of the system.
The Indirect Method, however, is an alternative method that avoids the use of the input
signal in the closed-loop system. The estimate θ̂N is thus solely based on measurements
of r and y.

As the data set that is used for identification is different for the two methods, the
expression of the inverse covariance matrix (2.9) is also different; compare (2.16)-(2.17)
with (2.11)-(2.12). An exception is the case of an open-loop situation, for which C(z) = 0
and S(z) = 1, leading to identical expressions of Fr(z) and Fv(z) for both methods.

The same input signal r[n] can thus lead to different variances of the parameters in θ̂N
when employing the Direct or Indirect Method. Clearly, the selection of the signals that
are to be used for the identification play a role in the quality of the estimate. We will make
use of this property in Chapter 7 in which we compare optimal input signals designed for
a Direct and Indirect identification experiment.

Remark 2.2 The Indirect Method is actually more general than shown here. We assume
that the model structures and orders of S(q,θ), G(q,θ), and H(q,θ) are known. Conse-
quently, we can directly identify θ0 by employing (2.13) in the least-squares method. In
general, the Indirect Method consists of two steps: 1) identifying the models GIM(q,η) and
HIM(q,η), where η is the parameter vector of the closed-loop transfer function GIM(q,η)
that is different from θ, and 2) use knowledge of the controller to calculate θ̂N from the
relations G(θ̂N)

1+C(q)G(q,θ̂N)
= GIM(q, η̂N) and H(θ̂N)

1+C(q)G(q,θ̂N)
= HIM(q, η̂N). We refer the reader

to (Ljung (1999)) for details. The method presented here is thus a tailor-made version of
the Indirect Method, but we shall nonetheless refer to it as the Indirect Method as no other
version will be used.
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2.3 Summary
In this chapter, the Prediction Error Method, the Direct Method, and Indirect Method
are described for a discrete-time single-input single-output closed-loop system. Known
expressions for the inverse covariance matrices of the parameter estimate of a Direct and
Indirect identification experiment are presented. These matrices play a crucial role in
Optimal Experiment Design as they are a function of the spectrum of the excitation signal.
It is this signal that we will in some sense optimally design in the next chapter.





3

The Basics of Least-Costly Experiment
Design

”I consider that I understand an equation when I can predict the properties
of its solutions, without actually solving it.” - Paul A.M. Dirac

3.1 Introduction
In the Introduction a non-exhaustive overview of results in the field of experiment design
has been given. In the last twenty years many experiment design problems have been for-
mulated and analysed, each with its own application in mind. We focus in this chapter on
Least-Costly Experiment Design (LCED) problems. The aim of these problems is to find
the optimal input signal that leads to some minimal experiment cost, while user-defined
accuracy constraints on the to-be-identified parameter vector are satisfied. The solution to
such a problem ensures that the experimental data is highly informative for the intended
purpose of the identified model by finding frequencies at which a high signal-to-noise ratio
and high sensitivity of the system to parameter changes are present (see the two examples
in Chapter 1).

One type of LCED problems considers the minimisation of the disruptive effect that
the excitation signal induces on the nominal closed-loop system, measured for instance by
a weighted power of this signal, such that parameter accuracy constraints are nonetheless
satisfied. The design variable in the problem is the power spectrum of the excitation signal;
the experiment length is considered fixed.

A related LCED problem is to minimise the experiment length by finding the optimal
excitation signal that ensures that a bound on a weighted sum of input and output powers
is satisfied. This problem is connected to one in which the experiment length is minimised
subject to bounds on the amplitudes of e.g. the input and output signal. We will consider
this highly-relevant problem in a later chapter.

In this chapter we consider the classical LCED framework as introduced by Bombois
et al. (2006). Section 3.2 introduces this classical framework. We explain how such opti-
misation problems can be numerically solved, and discuss the so-called chicken-and-egg
issue in Section 3.2.2. In Section 3.2.3 we provide several examples of optimisation prob-
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lems with specific parameter accuracy constraints that are quite pervasive in literature. In
Section 3.3 we provide an extensive geometric interpretation of these problems.

3.2 The LCED Framework

3.2.1 The Optimisation Problem and Its Solution
We consider the closed-loop system as defined by (2.1)-(2.2) in Chapter 2, see Fig. 2.2.
The expression of the inverse covariance matrix (2.9) of the parameter estimate θ̂N is a
functional of the spectrum of the excitation signal r. This expression can thus be used
to design an excitation signal that changes the accuracy of the parameter estimate to the
wishes of the user. In this section we introduce the classical least-costly experiment design
framework that aims to design the excitation leading to a parameter vector estimate (re-
sulting from an identification experiment) that satisfies user-imposed accuracy constraints
while nonetheless keeping the experiment cost minimal.

The LCED optimisation problem is defined as follows:

min
Φr

Ts

2π

∫
π/Ts

−π/Ts

L (e−iωTs ,θ0)Φr(ω)dω (3.1)

subject to

∀ j = 1, . . . ,J : P−1
N,θ[Φr]� Radm( j), (3.2)

in which P−1
N,θ the κ×κ-dimensional inverse covariance matrix defined by (2.9), Radm( j)

an equally-sized symmetric matrix, Ts the sampling time, and J ∈ N+ an application-
specific constant that sets the number of parameter accuracy constraints. The experiment
length N is fixed in this formulation.

The objective function (3.1), or cost functional, is defined as the weighted power of the
excitation signal r, in which L (e−iωTs ,θ0) is an even and positive scalar function. The ac-
curacy constraints (3.2) are matrix inequalities linear in Φr(ω), and are different for each
application. These constraints are called Linear Matrix Inequalities1. The symmetric ma-
trices Radm( j) are as-of-yet unspecified and depend on the intended application and user
requirements. The LMI P−1

N,θ �Radm means that ∀x : xTP−1
N,θx≥ xTRadmx. Hence, for

any c ∈ R+, the volume xTP−1
N,θx≤ c lies completely inside the volume xTRadmx≤ c.

Let us elaborate on the objective function (3.1). One of the simplest weighting functions
is L (e−iωTs ,θ0) = 1∀ω ∈ [−π/Ts,π/Ts] (or any other constant value). In this case, each
frequency is equally weighted and consequently the objective function is defined as the
power of the excitation signal r. A more common choice of L (e−iωTs ,θ0) reads

L (e−iωTs ,θ0) =
(
α|G0(e−iωTs)|2 +β

)
|S(e−iωTs ,θ0)|2, (3.3)

which leads to an objective function that is the sum of powers of the input signal com-
ponent ur[n] = S0(q)r[n] (weighted by β ∈ R+) and output signal component yr[n] =

1Notice that the objective function (3.1) is linear in Φr , and that each constraint in (3.2) is affine in Φr by
virtue of the expression of the inverse covariance matrix defined in (2.9).
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S0(q)G0(q)r[n] (weighted by α ∈ R+) induced by the excitation signal r[n] (Bombois
et al. (2006)). This is a sensible choice as the perturbations due to the excitation signal are
then minimised when using (3.3) in (3.1)-(3.2) - a favourable property when applying the
optimal excitation signal resulting from this optimisation problem to for instance industrial
processes. Indeed, adding an excitation signal disrupts the nominal operating conditions
and can lead to e.g. product quality deterioration. Hence, minimising the power of the
induced perturbations is good practice.

Remark 3.1 Observe that only the ratio α/β influences the solution of (3.1)-(3.2) in the
case (3.3). This can be seen by substituting (3.3) in (3.1) and rewriting the resulting
expression by moving β outside the integral. The cost can increase or decrease, but the
solution to the problem does not change.

In the case of an open-loop system we have C(z) = 0 and thus u = r and S(q,θ0) = 1, see
Fig. 2.2. The excitation signal r is thus directly applied to the system (2.2). The expression
ofP−1

N,θ for open-loop experiments is a special case of its closed-loop expression (2.9). The
equivalent of the popular weighting function (3.3) is then given by

L (e−iωTs ,θ0) =
(
α|G0(e−iωTs)|2 +β

)
. (3.4)

The optimisation problem (3.1)-(3.2) is convex for open- and closed-loop systems since
the objective function and LMI’s are affine in the spectrum Φr(ω). To solve this problem
numerically, the infinite-dimensional spectrum Φr(ω) must first be parameterised. Two
possibilities are:

• An input generated as the output of a M-th order FIR-filter driven by white noise,
having a spectral density

Φr(ω) =
M

∑
m=−M

cleimωTs (3.5)

where cm = c−m, m = 0, . . . ,M are the decision variables. An additional LMI con-
straint on the decision variables {cm}M

m=0 has to be added to ensure ∀ω : Φr(ω)≥ 0
in the convex algorithm.

• An input parameterised as a multi-sine with M harmonics, defined by a spectral
density

Φr(ω) =
π

2Ts

M

∑
m=1

A2
m
(
δ (ω−mω f )+δ (ω +mω f )

)
, (3.6)

where the squared amplitudes {A2
m}M

m=1 of the time-domain signal are now the de-
cision variables. The fundamental frequency ω f of the multi-sine should be chosen
a-priori (it is not a decision variable). This signal has a time-domain realisation

r[n] =
M

∑
m=1

Am sin(mω f nTs +φm)

in which φm is an arbitrary phase for mode m.

With a finite parameterisation, a Matlab toolbox such as CVX can solve the optimisa-
tion problem (3.1)-(3.2). In the case of the multi-sine parameterisation this optimisation
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problem becomes

min
{A2

m}Mm=1

1
2

M

∑
m=1

L (e−imω f Ts)A2
m (3.7)

subject to

∀ j = 1, . . . ,J :
N

2σ2
e

M

∑
m=1

A2
mRe

{
Fr(e−imω f Ts)FH

r (e−imω f Ts)
}
+R0 �Radm( j) (3.8)

which is obtained by substituting Φr(ω) with (3.6) and using (2.9). Notice that this prob-
lem is affine in the decision variables {A2

m}M
m=1. This particular parametrisation will be

often used in future chapters.
In general, i.e. for any parameterisation, the solution to the optimisation problem is

used to generate a time-domain excitation signal r[n] = ropt [n], which in turn is used in
either the Direct or Indirect identification method explained in Chapter 2.

3.2.2 Chicken-and-Egg Issue
The objective function and accuracy constraint in the optimisation problem (3.1)-(3.2)
depend on the true parameter vector θ0 and noise variance σ2

e . Yet, prior to the identifi-
cation experiment, θ0 and σ2

e are unknown. The optimisation problem thus suffers from
the chicken-and-egg dilemma. This should not come as a total surprise, since in order to
determine an optimal excitation signal, knowledge about the system must be present. In
order to circumvent this problem, it is common to replace the true values of the parameter
and variance with some estimates. These can for instance be obtained from prior experi-
ments. More sophisticated techniques are formulated in (Gerencsèr et al. (2009); Larsson
et al. (2013); Forgione et al. (2013)).

In the remainder of this work the chicken-and-egg issue will largely be ignored and conse-
quently (3.1)-(3.2) will be solved as if we had full knowledge of the system. However, we
will address the chicken-and-egg issue in some case studies and show that optimal experi-
ment design is nonetheless a powerful technique over e.g. white noise signal realisations.

3.2.3 Examples of LMI Constraints
Let us now consider some examples of LCED problems. To this end, we will specify for
particular applications the matrices Radm( j) that appear in the constraints of (3.1)-(3.2).
These examples will be used in future chapters.

Performance-relevant Constraints

In many real-life situations an identified model G(z, θ̂N) is used to design a controller of
a process represented by G(z,θ0). For example, the identified parameter can be used in a
controller C(θ̂N) that depends on the estimate θ̂N .

Let us assume that the best control performance of the closed loop defined by (G(z,θ0),
C(θ)) is achieved when θ = θ̂N = θ0, since the true system in this case is known exactly.
We quantify the system’s performance degradation by the application cost Vapp(θ). By
assumption, the function should attain its minimum value Vapp(θ) = 0 at θ = θ0. To
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ensure the function is minimal for this value of θ, it has the additional properties: (i)
[∇θVapp(θ)]θ=θ0 = 0 and (ii) V ′′app(θ0)� 0 (V ′′app(θ0) is the Hessian of Vapp(θ) evaluated
at θ = θ0).

To quantify whether or not a model is considered of sufficient quality for control we
impose the condition Vapp(θ̂N) ≤ 1

γ
, where γ ∈ R+ is an application-specific constant.

Since the estimate θ̂N is asymptotically normally distributed around θ0, and the experiment
length N is generally large, we may consider Vapp(θ) in the vicinity of θ0. A second-
order Taylor approximation of Vapp(θ) around θ0, using properties (i) and (ii), results in
(Hjalmarsson (2009))

Vapp(θ)≈
1
2
(θ−θ0)

TV ′′app(θ0)(θ−θ0),

where by construction V ′′app(θ0) is symmetric and positive definite. Using this expression,
we can define the set

Θapp(γ) =

{
θ | 1

2
(θ−θ0)

TV ′′app(θ0)(θ−θ0)≤
1
γ

}
. (3.9)

This ellipsoidal region thus contains the model parameters that deliver acceptable perfor-
mance. Hence, if θ̂N ∈Θapp(γ) an acceptable model is obtained. Multiplying the inequal-
ity in (3.9) on both sides with γχ2

α(κ), we see from (3.9) and (2.6) that θ̂N ∈Θapp(γ) with
a probability of at least α if the LMI

P−1
N,θ �Radm =

γχ2
α(κ)

2
V ′′app(θ0) (3.10)

is satisfied. The optimisation problem for performance-relevant constraints is thus defined
by (3.1)-(3.2) for J = 1 in whichRadm is given in (3.10).

Example 3.1 Consider an industrial plant G(θ0) that produces a liquid. The liquid needs
to be of high quality for commercial purposes, requiring the amount of impurities in the
product to be small. The plant is regulated by a controller C(θ). Let us define the con-
centration of the impurities in the liquid produced in the closed-loop system (G(θ0),C(θ))
at time n by the scalar function J [n;G(θ0),C(θ)]. Let us now assume that we obtain
the lowest concentration of the impurities when the controller C(θ) = C(θ0), i.e., the
closed-loop system operates optimally when the controller utilises the exact plant dynam-
ics (through θ0). Then, the function J [n;G(θ0),C(θ0)] yields the best impurities concen-
tration as a function of time, and can thus serve as a benchmark.

The application cost Vapp(θ) can therefore be defined by

Vapp(θ) =
1

Nwin

Nwin

∑
n=1

(J [n;G(θ0),C(θ)]−J [n;G(θ0),C(θ0)])
2 ,

in which Nwin sets the length of a user-defined time window, and J [n;G(θ0),C(θ)] is
the impurities concentration in the liquid of the closed loop (G(θ0),C(θ)) at time n.
The application cost Vapp(θ) thus compares the performance of a closed loop defined by
(G(θ0),C(θ)) to the (assumed) optimal loop (G(θ0),C(θ0)). The application cost trivially
satisfies Vapp(θ0) = 0 and the aforementioned properties (i) and (ii). The application cost
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is computed by simulating the impurities concentration for the closed loops (G(θ0),C(θ0))
and (G(θ0),C(θ)). We refer the reader to (Larsson (2014)) for more details.

Remark 3.2 Observe that the constraint matrix Radm in (3.10) and the Vapp(θ) function in
Example 3.1 depend on θ0. These are occurrences of the chicken-and-egg issue that is in-
herent to optimal experiment design; see Section 3.2.2. However, in practice, one typically
replaces θ0 with an old estimate θ̂N that is available from e.g. a previous identification
experiment.

Variance Constraints

There exist many experiment set-ups that are used to estimate physical parameters of e.g.
a solid or liquid. An example is the estimation of porosity and permeability of a sample
of rock from a subsurface reservoir (Heller et al. (2002)). In this and many other set-ups
a user-designed signal is added and an output signal is measured. These signals are then
used to estimate the unknown parameters with for instance a least-squares criterion, see
Chapter 2. In order to accurately estimate each parameter of the J entries θ0, j of the vector
θ0 containing all physical parameters, we can use LCED to design an optimal input signal
that minimises the cost while ensuring that

∀ j = 1 . . . ,J : θ̂N, j ∈ [−∆θ j +θ0, j,θ0, j +∆θ j] w.p. α. (3.11)

These constraints ensure with probability α that the estimates θ̂N, j lie in the above-defined
intervals with the true values θ0, j as centers. In this equation, the values ∆θ j are defined
by the user and determine the size of the interval (i.e. the accuracy). From (2.6) it follows
by definition that the size of the interval containing θ̂N, j with probability α is given by[

−
√

χ2
α(κ)σ j +θ0, j,θ0, j +

√
χ2

α(κ)σ j

]
, (3.12)

where σ j is the standard deviation of θ̂N, j. Equations (3.11) and (3.12) then trivially lead
to the constraints ∀ j = 1, . . .J : σ j ≤ ∆θ j/

√
χ2

α(κ), resulting in the variance conditions

∀ j = 1, . . . ,J : σ
2
j = e

T
j PN,θe j ≤

(∆θ j)
2

χ2
α(κ)

, (3.13)

with e j the j-th unit vector and PN,θ the covariance matrix of the estimate θ̂N . Using
Schur’s complement (Boyd and Vandenberghe (2003)) we then write these constraints as

∀ j = 1, . . . ,J : P−1
N,θ [A]� Radm( j) = e jeT

j
χ2

α(κ)

(∆θ j)2 , (3.14)

where Radm( j) is symmetric. The optimisation problem for variance constraints is thus
defined by (3.1)-(3.2) in whichRadm( j) is defined in (3.13) for j = 1, . . . ,J.

Example 3.2 Consider the transfer function G(z,θ0) =
az−1

1+bz−1 , where θ0 = (a,b)T . We

wish to perform an identification experiment such that the estimates âN and b̂N lie with a
probability of at least α = 0.99 inside the interval [0.99a,1.01a] and interval [0.98b,1.02b],
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respectively. In other words, the estimates âN and b̂N should not deviate more than respec-
tively 1% and 2% of the true values a and b with a probability of at least α = 0.99. Then
the variance constraints (3.13) read

σ
2
1 ≤

(0.01a)2

χ2
0.99(2)

, σ
2
2 ≤

(0.02b)2

χ2
0.99(2)

,

where we trivially have that J = 2 and κ = dim(θ0) = 2.

Frequency-wise Constraints

Multiple LMI constraints also arise in the case where robustness analysis arguments are
used to determine the largest additive uncertainty radm(ω) that can be allowed around the
frequency response of the identified model to enable satisfactory robust control design.
The associated mathematical condition is formulated as

∀ω : |G(e−iω , θ̂N)−G0(e−iω)|< radm(ω),

where ω ∈ [0,π). This condition must in theory hold at each frequency, but a grid of the
frequency range is often used instead, yielding a finite set of constraints

∀ j = 1, . . . ,J : |G(e−iω j , θ̂N)−G0(e−iω j)|< radm(ω j), (3.15)

with J the number of frequencies in the grid. The thresholds radm(ω j) are computed with
robust analysis techniques, see for instance the work of Ferreres and Fromion (1997).

Bombois and Scorletti (2012) aim to ensure (3.15) with probability α . For this pur-
pose, using a first-order approximation, the ellipsoid E containing θ0 (with probability α)
is projected in the frequency domain. This projection yields, at each frequency, an ellipse
in the Nyquist plane centered at G(e−iω , θ̂N), defined with the matrix

P (ω) = χ
2
α(κ)T

HPN,θ[Φr]T ,

where T = (Re([∇θG(e−iω ,θ)]θ=θ0), Im([∇θG(e−iω ,θ)]θ=θ0)), see (Bombois and Scor-
letti (2012)). These ellipsoids contain, with (at least) the same probability α , the frequency
response of the true system. Consequently, the modulus of the modelling error (i.e. the
l.h.s. of 3.15) is bounded by

radm(ω j) =
√

λmax(P (ω)).

Expression (3.15) can thus be rewritten as the following matrix inequality:

THPN,θT ≤
r2

adm( j)
χ2

α(κ)
I2×2,

which, via Schur complements, can be rewritten in the form (3.2):

∀ j = 1, . . .J : P−1
N,θ [Φr]� Radm( j) =

χ2
α(κ)

r2
adm(ω j)

TTH . (3.16)
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The optimisation problem for frequency-wise constraints is thus defined by (3.1)-(3.2)
withRadm( j) defined in (3.16) for j = 1, . . . ,J.

3.3 Geometric Interpretation
In Section 3.2 it is briefly mentioned that the LMI P−1

N,θ �Radm is equivalent to the state-
ment that ∀x : xTP−1

N,θx≥ xTRadmx. Hence, for any c ∈ R+, the volume xTP−1
N,θx≤ c

is fully contained in the volume xTRadmx ≤ c. Here, we shall give a more detailed geo-
metric interpretation.

Let us first consider the general case of singularRadm( j)’s in (3.2). An example is shown
in Fig. 3.1. Here, we have two variance constraints (J = 2) as detailed in Section 3.2.3.
The variance constraint on parameter θ1 is shown by the set of vertical lines l2, and the
constraint on θ2 by the set of horizontal lines l1. The blue ellipse indicates the boundary
of the confidence region. For the parameter θi, we thus only constrain the estimate θ̂N in
one direction. This is reflected by the set of lines li that define a tube (it may also be seen
as a degenerate ellipse). However, since we have a constraint on the other parameter as
well, the estimate is constrained to lie in the volume that results from the intersection of
the tubes defined by the lines l1 and l2. In this particular two-dimensional case, we see that
this volume is a rectangle.

In general, i.e. for dim(θ0) > 2, the concept remains the same. If we consider the
above example for dim(θ) = 3 the confidence ellipse becomes an ellipsoid, and the sets
of lines become sets of two-dimensional planes. The intersections of these sets of planes
then generates a three-dimensional box in which the confidence ellipsoid should lie. For
even higher dimensions, we cannot visualise how these volumes look like, but the concept
remains the same: the confidence hyperellipsoid should be contained in a hyper volume
that follows from intersections of hyper-dimensional constraint objects (e.g. the generali-
sations of the sets of lines and planes).

A Special Case

It is insightful to also consider the special case where the matrices Radm( j) are all non-
singular, i.e., ∀ j = 1, . . . ,J : det(Radm( j)) 6= 0. In this case, the constraints can all be
visualised as ellipsoids. For the sake of convenience, in the following we will only con-
sider one constraint and simply denote it by Radm. Extension towards more constraints is
straightforward.

In the following, we shall denote P = P−1
N,θ and R = Radm. We recall that the LMI

P �R is equal to
∀θ : θT Pθ ≥ θT Rθ, (3.17)

in which κ = dim(θ). From this expression we see that the LMI constraint means that
the confidence ellipsoid defined by the boundary θTPθ = c should lie inside the ellipsoid
θTRθ = c, where c ∈ R+ some constant. A two-dimensional example is provided in Fig.
3.2a. The confidence ellipse is shown in red whereas the constraint ellipse is shown in
black. The goal of least-costly experiment design is to find the optimal input spectrum
such that the confidence ellipsoid lies inside the constraint ellipsoid at minimal cost. We
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S1. (c) Ellipses after transformations S1 and S2. (d) Ellipses after transformations S1, S2, and S3.
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will now show how to simplify this geometric constraint.
For any dimension of the matrices P and R, we apply the following three coordinate

transformations in θ-space.

1. Coordinate change θ1 = S1θ, where S1 is unitary such that R1 = ST
1 RS1 is diagonal.

This unitary transformation is guaranteed to exist since R is symmetric and positive
definite. The same transformation yields P1 = ST

1 PS1. The resulting matrices P1
and R1 are again symmetric and positive definite. An example of such a transfor-
mation is shown in Fig. 3.2b. Here, we go from coordinate frame θ0 (Fig. 3.2a) to
coordinate frame θ1.

2. Coordinate change θ2 = S2θ 1, where S2 = R−1/2
1 is a non-unitary transformation

matrix that ensures that R2 = ST
2 R1S2 = I is the identity matrix. The same trans-

formation makes P2 = ST
2 P1S2. Both are again symmetric and positive definite. An

example of such a transformation is shown in Fig. 3.2c. Here, we go from coordi-
nate frame θ1 (Fig. 3.2b) to coordinate frame θ2.

3. Coordinate change θ 3 = S3θ 2, where S3 is a unitary matrix such that P3 = ST
3 P2S3

is diagonal. This transformation is guaranteed to exist since P2 is symmetric and
positive definite. The same transformation also yields R3 = ST

3 R2S3 = R2 = I.
An example of such a transformation is shown in Fig. 3.2d. Here, we go from
coordinate frame θ2 (Fig. 3.2c) to coordinate frame θ3.

The result of the coordinate transformations 1-3 is as follows. In the θ 3-coordinate system
the original ellipsoids θ

T Pθ and θ
T Rθ are now given by respectively

θT
3 P3θ3 =

dim(θ)

∑
i=1

λi(P3)θ
2
3,i, (3.18)

θT
3 R3θ3 =

dim(θ)

∑
i=1

λi(R3)θ
2
3,i =

n

∑
i=1
θ2

3,i. (3.19)

The transformations have greatly simplified the problem as both ellipsoids now have prin-
cipal axes that are aligned with the axes of the coordinate system, i.e., the matrices P3 and
R3 are both diagonal. The LMI P�R constraint in θ3-space is equivalent to, using (3.17),
∀θ 3 : θ

T
3 P3θ 3 ≥ θ

T
3 R3θ 3. From (3.18)-(3.19), this generates the constraints

∀i = 1, . . . ,dim(θ) : λi(P3)≥ λi(R3) = 1, (3.20)

where n is the total number of eigenvalues.
The next step is to prove that the eigenvalues of P3 are equal to the eigenvalues of

PR−1. In what follows we shall consider the eigenvalue λi, but the computations hold for
all eigenvalues i = 1, . . . ,n.

First, we show that λi(P2) = λi(P3). Starting from the characteristic equation of matrix
P2

det(P2−λiI) = 0, (3.21)

we see that by multiplying it by det(ST
3 ) on the left and by det(S3) on the right we obtain

det(ST
3 )det(P2−λiI)det(S3) = det(ST

3 P2S3−λiI) = 0, (3.22)
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where we used that ST
3 S3 = I and note that ST

3 P2S3 = P3, see (iii). Hence, the eigenvalues
are the same which is a consequence of the unitary transformation in step (iii).

Secondly, the matrix P2 is defined in step (ii) as P2 = ST
2 P1S2, where S2 = R−1/2

1 .
Hence, we have by definition that

det(P2−λiI) = 0⇔ det(ST
2 P1S2−λiI) = 0. (3.23)

As S2 = R−1/2
1 is diagonal we have that ST

2 = S2. Multiplying (3.23) on the l.h.s. with
det(S−1

2 ) and on the r.h.s. by det(S2) results in

det(S−1
2 )det(ST

2 P1S2−λiI)det(S2) = det(P1R−1
1 −λiI) = 0. (3.24)

At this point we have proven that λi(P3) = λi(P2) = λi(P1R−1
1 ).

Lastly, we substitute P1 = ST
1 PS1 and R1 = ST

1 RS1, see step (i), into (3.24) and find
that

det(P1R−1
1 −λiI) = det(ST

1 PS1(ST
1 RS1)

−1−λiI) = det(ST
1 (PR−1)S1−λiI) = 0.

Since S1 is a unitary matrix it is clear that, as shown in (3.21) for the unitary matrix S3, that
λi(P1R−1

1 ) = λi(PR−1). Hence, we have now proven that λi(P3) = λi(P2) = λi(P1R−1
1 ) =

λi(PR−1).

The constraints (3.20) can thus be written as ∀i : λi(PR−1) ≥ 1. All these constraints
can however be captured by a single one, i.e.,

λmin(PR−1)≥ 1. (3.25)

Indeed, if the smallest eigenvalue λmin(PR−1) ≥ 1, then all other eigenvalues are clearly
also greater than or equal to unity. Finally, replacing by definition P=P−1

N,θ and R=Radm
in (3.25) yields the expression

λmin

(
P−1

N,θ[Φr]R
−1
adm

)
≥ 1. (3.26)

This equation has a clear geometric meaning. From the above transformations we see that
the previous equation corresponds to the situation that, in θ3-space, the largest principal
axis of the confidence ellipsoid (inversely proportional to the square root of the eigenvalue
in (3.26)) is smaller than the largest principal axis of the constraint ellipse in the same
space (which in θ3-space takes the form of a ball). In fact, for the LCED problems, we
have the optimality condition that equality should hold for (3.26).

3.4 Summary
In this chapter we have described the framework of Least-Costly Experiment Design
framework. We have provided several examples that show how to find optimal input sig-
nals that minimise an experiment cost subject to e.g. constraints on the variance of the
to-be-estimated parameters. We have furthermore provided a novel geometric interpreta-
tion of such constraints.
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An Analytical Treatment of
Least-Costly Experiment Design

”It’s not that I’m so smart, it’s just that I stay with problems longer.” - Albert
Einstein

4.1 Introduction
With the advent of fast convex algorithms least-costly experiment design (LCED) prob-
lems like (3.1)-(3.2) could be efficiently solved (Bombois et al. (2006)). Over the years,
many problems have been considered in literature and their optimal input spectra have
been reported. However, questions like ’What mechanisms underlie the selection of the
optimal input spectrum?’, ’Do the optimal frequencies depend on the location(s) that the
parameters occupy in the transfer function?’ are difficult if not impossible to address nu-
merically. 1

A major remaining challenge from a theoretical point of view is, thus, the interpreta-
tion of the optimal power spectra that result from these numerical algorithms. Analytical
solutions to the LCED problems will enhance our understanding of the problem and pro-
vide insight into the mechanisms that should be exploited to find the optimal input signal.
Additionally, these analytical solutions can be used to check the solutions of the numerical
algorithms, and could in fact be hard-coded into an algorithm to provide solutions quicker
than currently possible.

In this chapter steps are taken that provide understanding of the solutions of a select few
LCED problems by solving them analytically. We shall in particular derive analytical
solutions for uni- and bi-parametric models. Examples of the former type are

G(z,θ0) =
a1z−1

1+θ0z−1 +b2z−2 , and G(z,θ0) =
θ0z−1

1+θ0z−1 +b2z−2 ,

in which the scalar parameters a1 and b2 are known. Notice that θ0 only occupies one posi-
tion in the first transfer function, whereas it occupies multiple positions in the second one.

1Parts of this chapter have been published in (Potters et al. (2015, 2016a)).

35
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In general, θ0 may occupy an arbitrary number of positions. Examples of bi-parametric
models are

G(z,θ0) =
θ1z−1

1+θ2z−1 and G(z,θ0) =
a1z−1 +θ1z−2

1+θ1z−1 +θ2z−2 +b3z−3 ,

in which the elements of θ0 = (θ1,θ2)
T may appear only once (the first example) or mul-

tiple times in the transfer function (the second example).
Admittedly, the appearance of uni- and bi-parametric black-box models are limited in

the System Identification literature. However, they are quite pervasive in other domains
such as medical imaging (Bombois et al. (2011); Manchester (2012)), reservoir engineer-
ing (Heller et al. (2002); Mansoori et al. (2014); Jansen (2013)), material sciences (Gabano
and Poinot (2009)), etc.. This is mainly due to the fact that, in sharp contrast to black-box
parameters, many physical parameters (e.g. the density of water, the speed of light) are
precisely known and thus need not be identified. Frequently, these physical systems can
be represented by continuous-time, irrational transfer functions. We will show in Chap-
ter 6 that the result we will present in the sequel for discrete-time systems can be easily
extended to the case of continuous-time systems.

Analytical solutions for some uni-parametric LCED problems have already been re-
ported in the literature. Probably one of the first contributions is due to Zarrop, who
proved that a single sine is a solution for uni-parametric models (Zarrop, 1979, p. 35-36).
However, the optimal frequency provided in this book is only given for a special case due
to normalisation, and no interpretation is given. Wahlberg et al. (2011) provide a specific
solution for a uni-parametric LCED problem with one constraint by studying an open-loop
output-error system. Malti et al. (2014) give a specific solution for a uni-parametric frac-
tional model and consider a D-optimality criterion.

In this chapter we find analytical solutions for the LCED problem (3.1)-(3.2) for both
uni- and bi-parametric systems when the optimal excitation signal is restricted to the class
of a single sinusoid. More precisely, we provide an analytical expression for the ampli-
tude and frequency of this optimal sinusoidal excitation. In the uni-parametric case, we
furthermore show that this single sinusoid is in fact also the solution of (3.1)-(3.2) when
no restriction whatsoever is imposed on the spectrum. For the bi-parametric case, we also
provide arguments as to why this parametrisation of the spectrum as one sinusoid is not
too restrictive in practice.

We thus find solutions to the generic LCED optimisation problem (3.1)-(3.2) that
considers an arbitrary but finite number of parameter accuracy constraints, and which is
valid for both open- and closed-loop identification problems (either the Direct or Indirect
Method).

The outline of this chapter is as follows. Section 4.2 is dedicated to the derivation of
the analytical solutions of (3.1)-(3.2) for both uni- and bi-parametric models. Interpreta-
tion of these solutions is given in Section 4.3 in which we also consider several illustrative
examples.
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4.2 Analytical Solutions

4.2.1 The Two Model Types
We consider the identification of plant transfer functions G0(z) using a model structure
G(z,θ) containing one or two unknown parameters. The noise model H(z,θ) = H(z)
in (2.3) is assumed fixed for simplicity (i.e. it does not contain any parameter that re-
quires identification). Since two parameters have to be identified in G(z,θ), the theory
on persistency of excitation (Ljung (1999)) states that these parameters can be identified
consistently with an excitation signal made up of one sinusoid. This is true for both open-
and closed-loop identification. As a result, the obtained covariance matrix (2.9) is non-
singular with this type of excitation. To nevertheless avoid pathological cases, we make
the following assumption.

Assumption 4.1 We consider uni- and bi-parametric models for which an identification
experiment using single sinusoid as excitation signal leads (assymptotically) to a non-
singular covariance matrix.

Since by assumption a single sinusoid is sufficient to generate a non-singular covariance
matrix, we will design the optimal excitation as such and show that we can determine both
the frequency and the amplitude of this signal. We consider thus the following parametri-
sation Φ1 for the optimal signal (we take a sampling time of Ts = 1 seconds throughout
this chapter without loss of generality):

Φ1(ω) =
πA2

2 ∑
l={−1,1}

δ (ω + lω). (4.1)

where both ω and A are design variables. This spectrum has the following time-domain
realisation:

r[n] = Asin(ωn+φ), (4.2)

where φ can be chosen freely (it does not influence the spectrum). Note that, unlike in
(3.6), we also optimise the frequency of the sinusoid.

One could wonder whether considering a multi-sine as in (3.6) or, more generic, a sum
of sines (instead of a single sinusoid), would not lead to a smaller cost2. This is a relevant
question. We show in the sequel that, for the uni-parametric case, one single sinusoid
is indeed optimal (i.e. this signal leads to the global minimum of (3.1)-(3.2)). For the
bi-parametric case, this result is not formally proven in this chapter as it would be quite
involved. However, examples in (Zarrop (1979)) and (Javaherian (1974)) suggest that the
optimal signal of optimisation problems like (3.1)-(3.2) are indeed made up of only one
sinusoid. We furthermore give a heuristic argument in a future section.

4.2.2 Bi-Parametric Models
Let us particularise the optimisation problem (3.1)-(3.2) to the case of the identification
of a bi-parametric model, and for which the spectrum is restricted to be in the class Φ1

2It should be stressed that adding additional sines to an input signal is often done in practice when the model
order is not known exactly.
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defined in (4.1). Let us first rewrite the optimisation problem as

min
Φr∈Φ1

1
2π

∫
π

−π

L (e−iω)Φr(ω)dω (4.3)

subject to
∀ j = 1, . . . ,J : P−1

r,N,θ[Φr]�Radm( j)−R0, (4.4)

where the matrices in (4.4) are two-dimensional, and we made use of the definition of
PN,θ in (2.9) to move the termR0 in the expression of the inverse covariance matrix to the
right hand side of the LMIs, and in which Φ1 is the class of all single-sine spectra being a
subset of all the possible spectra Φtot .

An analytical solution is given in the theorem below, which requires the following
lemma.

Lemma 4.1 Consider the κ ×κ-dimensional symmetric matrices A � 0 and B � 0 and
a positive scalar α . Then the following statements are equivalent:

1. αA�B,

2. α ≥ λmax
(
A−1B

)
.

Proof: Define A−1/2 = (A−1/2)T as the square root of the inverse of A. The inequality
(1) is by definition equivalent to ∀θ : αθTAθ ≥ θTBθ, where dim(θ) = κ . Define the
transformation θ1 = S1θ, where S1 =A

1/2. Then (1) may be written as ∀θ : αθT
1 Iθ1 ≥

θT
1A
−1/2BA−1/2θ1, which is equivalent to

α ≥ λmax

(
A−1/2BA−1/2

)
. (4.5)

The eigenvalues λ of the matrix in (4.5) are found by solving

det
(
A−1/2BA−1/2−λI

)
= 0.

Multiplying this equation from the left with det(A−1/2) and with det(A1/2) from the right
and usingA−1/2A1/2 = I results in

det(A−1/2)det
(
A−1/2BA−1/2−λI

)
det(A1/2) = 0 =

det(A−1B−λA−1/2IA1/2) = det(A−1B−λ I),

which shows that ∀i = 1, . . . ,κ : λi
(
A−1/2BA−1/2

)
= λi

(
A−1B

)
. In particular, it fol-

lows that λmax
(
A−1/2BA−1/2

)
= λmax

(
A−1B

)
. Substitution of this equality in (4.5)

proves the equivalence between (1) and (2). 2

Theorem 4.1 Consider the optimisation problem (4.3)-(4.4) corresponding to the least-
costly identification of a bi-parametric model for which Assumption 4.1 holds. Then the
solution of this optimisation problem is given by

Φr,opt(ω) =
πσ2

e

N
max

j
λmax

([
Re
{
F (e−iωopt )

}]−1
R( j)

)
∑

l={−1,1}
δ (ω + lωopt) (4.6)
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in which

ωopt = argmin
ω

[
L (e−iω ,θ0)max

j
λmax

([
Re
{
F (e−iω)

}]−1
R( j)

)]
, (4.7)

σ2
e is the variance of the white noise, and where F (e−iω) = Fr(e−iω)FH

r (e−iω) and
R( j) =Radm( j)−R0.

Proof: Let us start by a change of variables, i.e., define

Φξ (ω) = L (e−iω ,θ0)Φr(ω). (4.8)

If Φr(ω)∈Φ1, then the spectrum Φξ (ω) defined in (4.8) also lies in Φ1, i.e., Φξ (ω)∈Φ1,
and is defined as

Φξ (ω) =
πC2

2 ∑
l={−1,1}

δ (ω + lω). (4.9)

Moreover, the spectrum Φξ (ω) (4.8) has the same frequency ω as Φr(ω) and a squared
amplitude that is related to the one of Φr(ω) through A2 = C2/L (e−iω ,θ0). Using this
change of variables we simplify the optimisation problem (4.3)-(4.4) to

min
Φξ∈Φ1

1
2π

∫
π

−π

Φξ (ω)dω (4.10)

subject to

∀ j = 1, . . . ,J : P−1
r,N,θ

[
Φξ (ω)

L (e−iω ,θ0)

]
�Radm( j)−R0. (4.11)

Next, we inject the spectrum (4.9) in (4.10)-(4.11), and use (2.9) or (3.8) to obtain the
optimisation problem

min
C2,ω

1
2

C2 (4.12)

subject to

∀ j = 1, . . . ,J :
NC2

2σ2
e L (e−iω ,θ0)

Re
{
Fr(e−iω)FH

r (e−iω)
}
�Radm( j)−R0. (4.13)

We then rewrite the above J LMI constraints as

C2 ≥ 2σ2
e L (e−iω ,θ0)

N
max

j
λmax

([
Re
{
F (e−iω)

}]−1
R( j)

)
, (4.14)

where F (e−iω) and R( j) are defined in the statement of the theorem, and where from
Lemma 4.1 it follows that the LMIs ∀ j = 1, . . . ,J : A�B( j) are equivalent to the scalar
inequality max j λmax(A

−1B( j)) ≤ 1, where A is invertible. Note that Re{F (e−iω)} is
invertible by virtue of Assumption 4.1.

At this point we obtained the simpler optimisation problem (4.12)-(4.13) that is formu-
lated for the signal ξ [n]. In order to minimise the objective function (4.12) we clearly have
the optimality condition that the left hand side of (4.14) should be equal to its right hand
side. Furthermore, to minimise (4.12) we should minimise C2 (4.14), which is achieved
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by selecting the frequency ωopt as defined in (4.7). The optimal input spectrum Φξ ,opt that
solves the problem (4.12)-(4.13) is thus given by (4.9) with ω = ωopt defined in (4.7) and
C2 =C2

opt given by

C2
opt =

2σ2
e L (e−iωopt ,θ0)

N
max

j
λmax

([
Re
{
F (e−iωopt )

}]−1
R( j)

)
.

The last step in the proof is to find the optimal spectrum that solves the intended opti-
misation problem (4.3)-(4.4). It is clear from (4.8) that Φr,opt(ω) is given by (4.1) with
ω = ωopt and squared amplitude A2

opt =C2
opt/L (e−iω ,θ0), i.e.,

A2
opt =

C2
opt

L (e−iωopt ,θ0)
=

2σ2
e

N
max

j
λmax

([
Re
{
F (e−iωopt )

}]−1
R( j)

)
. (4.15)

We have thus obtained the solution (4.6)-(4.7).3 2

4.2.3 Uni-Parametric Models

When only one parameter has to be identified in the transfer function G(z,θ) of the model
structure, the covariance matrix PN,θ and the matrices {Radm( j)}J

j=1 all reduce to scalars.
The vector of transfer functions Fr(z) also reduces to a single transfer function. Conse-
quently, we can rewrite the optimisation (4.3)-(4.4) as

min
Φr∈Φ1

1
2π

∫
π

−π

L (e−iω ,θ0)Φr(ω)dω (4.16)

subject to
N

2πσ2
e

∫
π

−π

|Fr(e−iω)|2Φr(ω)dω ≥ R, (4.17)

where we recall that Φ1 is the class containing all single-sine spectra, and the J constraints
have been absorbed into one constraint using the notation R =−R0 +max j Radm( j).

The analytical solution of this problem can be deduced in the same way as for the
bi-parametric case.

Corollary 4.1 The solution of the optimisation problem (4.16)-(4.17) is given by

Φr,opt(ω) =
πσ2

e R
N|Fr(e−iωopt )|2 ∑

l={−1,1}
δ (ω + lωopt), (4.18)

with

ωopt = argmin
ω

L (e−iω ,θ0)

|Fr(e−iω)|2 . (4.19)

Proof: The proof follows along the same lines as for Theorem 4.1. 2

3Note that L (e−iω ,θ0) is replaced by L (e−iωopt ,θ0) in A2
opt (4.15). This is allowed due to the presence of

the Dirac delta function that is centered at ω =±ωopt .
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Remark 4.1 For the case of the identification of one parameter, the optimal frequency
(4.19) could also be equal to zero. The optimal excitation signal corresponding to the
spectrum (4.18) is then no longer a sinusoid but a constant signal equal to ∀n = 1, . . . ,N :√

σ2
e R

N|Fr(0)|2 .

Remark 4.2 Note that, when the objective function is the power of the excitation signal
(L (e−iω ,θ0) = 1), the optimal sinusoid has a frequency ωopt that is the frequency for
which the modulus of Fr(e−iω) is maximal. Given the fact that the derivative of the predic-
tion error (c.f. (2.4)) with respect to parameter θ can be expressed as Fr(q)r[n]+Fv(q)e[n],
this particular excitation signal leads to a prediction error with the highest sensitivity to
variations in the to-be-identified parameter θ .

Remark 4.3 The frequency function L (e−iω ,θ0)/|Fr(e−iω)|2 could reach its global min-
imum at distinct frequencies. The optimal signal can then be a single sinusoid at one of
these possible frequencies, or a superposition of sinusoids at these different frequencies.
Note that this could also have been the case for (4.7). In the sequel, we will disregard this
possibility for simplicity.

Corollary 4.1 gives the solution of the LCED optimisation problem for the restricted class
of spectra (4.1), i.e., Φr(ω) ∈ Φ1. However, we show below that, for the uni-parametric
case, the spectrum (4.18) is also the general solution of (3.1)-(3.2), i.e., the solution when
the spectrum Φr is sought in the complete set of all possible spectra Φtot . We consider
thus the optimisation problem

min
Φr∈Φtot

1
2π

∫
π

−π

L (e−iω ,θ0)Φr(ω)dω (4.20)

subject to the scalar constraint (4.17).

Theorem 4.2 Suppose that L (e−iω ,θ0)/|Fr(e−iω)|2 in (4.19) reaches its global minimum
at one single frequency. Consider the optimisation problem (4.20)-(4.17). A solution of
this optimisation problem is the spectrum (4.18).

Proof: Let us remark that, given the nature of the optimisation problem (4.20)-(4.17), the
scalar inequality constraint (4.17) must be active at the optimum. Indeed, substituting the
spectrum (4.18) into (4.17) we find that

N
2πσ2

e

∫
π

−π

|Fr(e−iω)|2Φr,opt(ω)dω = R.

Furthermore, note that for the spectrum (4.18), the objective function in (4.20) is given by

1
2π

∫
π

−π

L (e−iω ,θ0)Φr,opt(ω)dω =
σ2

e

N
R

L (e−iωopt ,θ0)

|Fr(e−iωopt )|2 .

We now prove the theorem by contradiction. Suppose that the solution of (4.20)-(4.17) is
a spectrum Φ(ω) ∈Φtot different from (4.18). This spectrum should obey the condition

1
2π

∫
π

−π

L (e−iω ,θ0)Φ(ω)dω <
σ2

e

N
R

L (e−iωopt ,θ0)

|Fr(e−iωopt )|2 . (4.21)
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In other words, the objective function with Φ(ω) is smaller than with Φr,opt(ω). Since
Φ(ω) is a solution of the optimisation problem, the inequality constraint (4.17) must also
be active, i.e.,

N
2πσ2

e

∫
π

−π

|Fr(e−iω)|2Φ(ω)dω = R. (4.22)

Replacing R in (4.21) with its expression in (4.22) we obtain the inequality∫
π

−π

L (e−iω ,θ0)Φ(ω)dω <
L (e−iωopt ,θ0)

|Fr(e−iωopt )|2
∫

π

−π

|Fr(e−iω)|2Φ(ω)dω,

which, after multiplying both sides with |Fr(e−iωopt )|2
L (e−iωopt ,θ0)

and rearranging terms, yields

∫
π

−π

|Fr(e−iωopt )|2
L (e−iωopt ,θ0)

L (e−iω ,θ0)Φ(ω)dω <
∫

π

−π

|Fr(e−iω)|2
L (e−iω ,θ0)

L (e−iω ,θ0)Φ(ω)dω.

By virtue of (4.19) we have that ∀ω : |Fr(e−iωopt )|2
L (e−iωopt ,θ0)

> |Fr(e−iω )|2
L (e−iω ,θ0)

. Therefore, the above in-

equality never holds for any Φ(ω). We have thus proven by contradiction that the spectrum
(4.18) leads to the smallest cost given the constraint (4.17). 2

4.3 Interpretation

4.3.1 Motivation
In this section we provide interpretation of the analytical solutions in the previous section.
For bi-parametric models we will study in particular the curiosity as to why a single sine
is usually the optimal solution. We give a fictive example that shows that two sines can in
fact lead to a smaller cost than a single sine. We also motivate why a solution consisting
of two sines in practice hardly occurs. We show how the chicken-and-egg problem can
be easily analysed using the analytical solution, and compare this solution to a numerical
one. For uni-parametric models we analyse how the occupancy of the parameter θ0 in a
model affects the optimal frequency, and compare the analytical and numerical solutions.

We shall for convenience restrict our analysis in this section to Direct Identification
experiments.

4.3.2 Bi-Parametric Models
Theorem 4.1 provides the optimal spectrum to (3.1)-(3.2) when restricting the solution
space to that of single-sine spectra. Unlike for the uni-parametric case, we have however
not proven that a single-sine solution is the optimal solution out of all possible spectra.
Nonetheless, it is often the optimal spectrum out of all possible ones. This statement is
supported with numerical simulations in (Javaherian (1974)) and, as we will see, in an
example of Chapter 6. In the sequel, we will also give an example. We will also provide
heuristic arguments that explain this curiosity.

We will use the following example throughout this section.
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Example 4.1 Consider the system defined by G(z,θ0) =
θ1z−1

1+θ2z−1 , where θ0 = (4,−0.6)T ,

a noise filter H(z) = 1, and noise variance σ2
e = 4. This system is operated and identified

in open-loop: R0 = 02×2. We furthermore consider the LCED problem (3.1)-(3.2) with
N = 500, L (e−iω ,θ0) = 1, J = 1, andRadm = 100I2×2.

Analytical vs Numerical Solution

Consider Example 4.1. Let us compare the analytical solution (4.6)-(4.7) of the LCED
problem (4.3)-(4.4), in which the power spectrum of the excitation signal is restricted to
single-sine spectra, to the numerical solution of (3.1)-(3.2), in which the power spectrum
is not restricted.

We first consider the analytical solution. The magenta curve in Fig. 4.1 gives, as a func-
tion of ω , the amplitudes A of the excitation sine r[n] = Asin(ωn) at frequency ω that is
required to satisfy (4.4). The points are computed using (4.15) in which ωopt is replaced
with ω , and where we used the true parameter vector θ0 defined in Example 4.1. The curve
attains its minimum A2 = A2

opt = 0.8116 (c.f. (4.15)) at the frequency ω = ωopt = 0.4932
(c.f. (4.7)). This point thus defines the optimal spectrum (4.6).

Denote P−1
N,θ = A2P−1(ω) as the inverse covariance matrix of the single sine r[n] =

Asin(ωn), where P−1(ω) = N
2σ2

e
Re
{
Fr(e−iω)FH

r (e−iω)
}

, and define the boundary of the
confidence ellipse (2.6) for a single sine as

Econ f (ω) : θT A2P−1(ω)θ = 1. (4.23)

The ellipse Econ f (ωopt) is shown for A = Aopt in Fig. 4.2a. In this figure several other
ellipses Econ f (ω

′) using A = Aopt at frequencies ω ′ 6= ωopt are also shown. The ellipse
R : θTRadmθ = 1 is shown in black, and defines the boundary of the area in which
the confidence ellipse should lie. For our example this ellipse is in fact a circle, since
Radm = 100I2×2. Notice that the major axis of the magenta ellipse (corresponding to the
optimal frequency ωopt ) is smaller than that of all other (shown) ellipses. For the optimi-
sation problem we consider here, we know from Section 3.3 that the optimality condition
A2

optλmin(P
−1(ωopt)Radm) = A2

optλmin(P
−1(ωopt)) = 1 should hold. Geometrically, it

means that the major axis of the confidence ellipse should be as long as the radius of the
black circle, i.e., the confidence ellipse is internally tangent to the black ellipse. Since the
objective function (4.3) for Example 4.1 is 1

2 A2, it is clear from Fig. 4.2a that the magenta
ellipse requires the smallest scaling A2 such that the confidence ellipse Econ f (ωopt) is in-
ternally tangent to the black ellipse; and that it satisfies the optimality condition. Indeed,
for all other ellipses, a squared amplitude A2 > A2

opt is required to ensure internal tangency,
leading to a suboptimal cost (4.3).

Consider now the numerical solution obtained by solving (3.1)-(3.2), in which the input
spectrum is parameterised as a multi-sine (3.6) with M = 50 harmonics and fundamental
frequency ω f = π/M, and where we used the true parameter vector θ0 of Example 4.1 in
the covariance matrix expression. The solution is shown in black in Fig. 4.1. Notice that
the solution consists of only one spectral line at ω = 0.5027 with an amplitude of 0.812.
This optimal frequency and squared amplitude are almost equal to their respective values
of the analytical solution (where the magenta curve attains its minimum). We conclude
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that, for Example 4.1, the single-sine analytical solution is also the solution of (3.1)-(3.2).
Let us analyse the accuracy of the numerical solution by solving (3.1)-(3.2) with a

multi-sine using different values of M. The results are summarised in Table 4.1. Observe
that for M ≥ 25 the numerical optimal frequency and squared amplitude are close to the
analytical ones. At M = 500 the frequency grid is sufficiently detailed to yield an optimal
frequency that is almost identical to ωopt = 0.4932.

M Numerical ωopt Numerical Aopt

10 0.6283 0.838
25 0.5027 0.812
50 0.5027 0.812
100 0.5027 0.812
500 0.4901 0.812

Table 4.1: The numerical solution of the LCED problem (3.1)-(3.2) is solved using a multi-sine parameterisation (3.6) for several
values of M and fundamental frequencies ω f = π/M. All solutions consist of a single spectral line at the tabulated frequencies.
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ω

A

Figure 4.1: The squared amplitude A2 (4.15) required to satisfy (4.4) as a function of frequency for θ = (3.6,−0.65)T (green),
θ = (4.2,−0.45)T (blue), and θ = θ0 = (4.0,−0.6)T (magenta). The optimal frequency for each value of θ is given by that
value of ω at which the corresponding curve attains its minimum.

Why is a Single Sine Often Optimal?

Let us address this question now. To this end, we recall that A2P−1(ω) is defined as
the inverse covariance matrix corresponding to the single sine r[n] = Asin(ωn), where
P−1(ω) is defined above. Note that the matrix P−1(ω) is, thus, essentially the building
block in order to generate a confidence ellipse based on an inverse covariance matrix that
is a superposition of the M sines rm = Am sin(ωmn), i.e., P−1

N,θ = ∑
M
m=1 A2

mP
−1(ωm).

Consider now again Example 4.1. In Fig. 4.2a we have shown in blue, red, ma-
genta, green, and cyan the ellipses θT A2P−1(ω)θ = 1 for respectively the frequencies
ω = {0.157,0.31,ωopt ,1.0,2.0} and for A2 = 1. Since A2 = 1 for all these ellipses, they
all correspond to an objective function (3.1) equal to 1

2 .
In Fig. 4.2b we show for Example 4.1 the optimal ellipse θTP−1(ωopt)θ = 1 in ma-

genta, and several grey ellipses. The latter are all combinations of a superposition of two
ellipses displayed in Fig. 4.1, for which we ensured that the objective function is also
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Figure 4.2: (a) The ellipse R : θTRadmθ = 1 is shown in black. The set of ellipses Econ f (ω) : θTP −1(ω)θ = 1 are shown in
blue, red, magenta, green, and cyan for respectively ω = {0.157,0.31,0.49,1.0,2.0} at A = 1. For all non-black ellipses the
objective function (4.3) is equal to 1

2 . (b) Superpositions of combinations of two ellipses shown in (a) for which the value of the
objective function (4.3) is equal to 1

2 . The magenta ellipse and black circle are defined in (a).

equal to 1
2 . Notice that the major axes of all these grey ellipses remain larger than that of

the single-sine optimal solution (magenta). Thus, a single-sine solution is optimal for Ex-
ample 4.1, as was already known from the numerical solution obtained previously. Since
Zarrop (1979) has shown that the optimal signal can always be expressed as a multi-sine,
we can indeed conclude that the numerical solution with M = 500 is very close to the op-
timal spectrum.

The cause as to why a single sine is optimal, as opposed to two or more superimposed
sines, has to do with the following. We have seen in Fig. 4.1 that at different frequen-
cies ω , the confidence ellipse θTP−1(ω)θ = 1 has (i) a different orientation, and (ii) a
different shape. However, we notice a relatively small difference in orientation, but large
difference in shape, between these ellipses. In order to ensure that two sines deliver the
optimal solution, the variability in points (i) and (ii) as a function of frequency should both
be considerable. We illustrate this with the following example.

Example 4.2 Consider the problem (3.1)-(3.2) forRadm = I ,R0 = 02×2, and a weighting
function L (e−iω ,θ0) = 1. We consider a fictive system for which the inverse covariance
matrix for a single sine u[n] = Asin(ωn) is denoted by A2X(ω). For this problem, we
have the optimality condition that A2λmin(X(ω)) = 1. Suppose that we have a single-
sine solution to this optimisation problem, defined by the optimal amplitude Aopt =

1√
2

and optimal frequency ωopt such that λmin(A2
optX(ωopt)) = 1, where X(ωopt) =

(
4 0
0 2

)
.

Note that λmin(X(ωopt)) = 2. Now, consider two sines with amplitudes A1 = A2 = 1√
6
,

ω1 = ωopt , ω2 6= ω1 and suppose X(ω2) =

(
2 0
0 4

)
. We thus have two ellipses that are

rotated 90 degrees with respect to each other. It follows that the inverse covariance matrix
of the input signal u[n] = A1 sin(ω1n)+A2 sin(ω2n) is given by

λmin
(
A2

1X(ω1)+A2
2X(ω2)

)
= λmin

(
1
6
X(ωopt)+

1
6
X(ω2)

)
= 1.
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Hence, a two-sine solution leads to a lower cost than a single-sine. Indeed, the objective
function (3.1) for the two-sine solution is 1

2 ∑
2
i=1 A2

i = 1
6 , yet 1

2 A2
1 = 1

2 A2
opt =

1
4 for the

single-sine solution.

In this fictive example the superposition of two ellipses (two sines) led to a smaller cost
than when using only a single ellipse (one sine). This was possible since the two eigen-
values of X differed by a factor two, and because the confidence ellipse corresponding to
X(ω2) was rotated 90 degrees with respect the confidence ellipse that corresponding to
X(ωopt), i.e. no parameter correlation. Consequently, the accuracy in the direction of the
major axis of the confidence ellipse of X(ωopt) could be much improved by adding an-
other sine. Indeed, the major axis corresponding to the superimposed matrices is a factor√

3 times smaller than ofX(ωopt).

For realistic model structures such as Box-Jenkins, Output-Error, FIR, etc., the variabil-
ity in orientation and shape as a function of frequency (i.e. points (i) and (ii) mentioned
above) is much more limited than in our fictive example. Indeed, from (2.9) it is clear
that the plant model G(z,θ0) determines the orientation and shape of the ellipse through
the elements of the covariance matrix, e.g. the gradient [∇θG(z,θ)]θ=θ0 . Apparently, for
these model structures, the orientation is limited to such an extent that a single-sine so-
lution is better than a multi-sine one. This is confirmed by Example 4.1, the case study
in Chapter 6, and examples in (Javaherian (1974)). It is probably possible to give exact
conditions when a multi-sine solution is better than a single-sine, but such an analysis is
not considered here.

Chicken-and-Egg Issue

Another benefit of the analytical solution (4.6)-(4.7) for bi-parametric models is the ease
with which the chicken-and-egg issue (c.f. Section 3.2.2) can be studied.

Let us consider again Example 4.1. In the calculation of the analytical solution in the
previous section, we have made use of the true unknown parameter vector θ0 = (4.0,0.6)T

in the expression of the inverse covariance matrix that is used in (4.4). Obviously, as
we intend to estimate this parameter, we should in reality replace this parameter with
an estimate θg. To this end, we calculate the required amplitude A2 to satisfy (4.4) as
a function of frequency using (4.15) for three vectors θg, see Fig. 4.1. The magenta
curves corresponds to θg = θ0. Notice that for the green curve corresponding to θg =
(3.6,−0.65)T , we would obtain an optimal squared amplitude that is lower than for θ =
θ0, whereas a larger one would be obtained for the blue curve, corresponding to θg =
(4.2,−0.45)T . In the former case, we would not satisfy the constraint (4.4) whereas in the
latter case we would (at the expensive of a larger experiment cost).

Remark 4.4 The analytical curves in Fig. 4.1 can also be used to find the second best
solution in case the optimal frequency cannot be used in practice. For instance, in the
case of the magenta curve, we see that the second best solution would be to use the first
allowed frequency higher than ωopt = 0.4932.

4.3.3 Uni-Parametric Models
We now turn to the interpretation of the analytical solution for uni-parametric models.
We will consider here the effect of the location of the unknown parameter on the optimal
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excitation frequency, and compare the analytical solution with the one that is obtained
using the convex numerical method explained in Chapter 3. More extensive interpretation
can be found in (Potters et al. (2015)).

Parameter Location

Let us consider the identification in open- or closed-loop of a system with a fixed noise
model H(z) and a plant transfer function G(z) given by

G(z) =
B(z)

1+A(z)
=

∑
nb
r=1 brz−r

1+∑
n f
m=1 amz−m

, (4.24)

in which {br}nb
r=1, {am}n f

m=1 are the coefficients of the polynomials B(z), A(z). Suppose,
now, that all these coefficients are known except one. Note that this is a restriction from
the general case we have considered so far. This unknown coefficient can either reside
in the numerator or denominator. In the former case, the unknown coefficient θ0 = br′

for some N 3 r′ ∈ [1,nb], whereas for the latter case the unknown coefficient θ0 = am′ for
some N 3 m′ ∈ [1,n f ]. We write (4.24) as

G(z,θ0) =
B(z,θ0)

1+A(z)
, or G(z,θ0) =

B(z)
1+A(z,θ0)

,

if the unknown coefficient resides respectively in the numerator or denominator.

We pose the following question: Will the optimal frequency ωopt (4.19) depend on the
location of the parameter in this transfer function?

In order to answer this question, we recall the expression of ωopt (4.19) for the case of
a Direct Identification experiment (see Chapter 2):

ωopt = argmin
ω

L (e−iω ,θ0)|H(e−iω)|2
|[∇θ G(e−iω ,θ)]θ=θ0 |2|S0(e−iω)|2 . (4.25)

First, note that the noise filter is independent of θ0. Second, the expressions L (e−iω ,θ0)
(see for instance (3.3)) and S0(e−iω) (c.f. (2.8)) are also invariant with respect to the
position of θ0 in (4.24). Indeed, these functions are simply evaluated at the true value θ0;
their frequency responses therefore do not change. Consequently, the optimal frequency
does not change due to these terms.

We now show, however, that the derivative of G(z,θ) appearing in (4.25) does influ-
ence the optimal frequency. To this end, we calculate the derivative of (4.24) for the case
in which the unknown parameter resides in solely the numerator, and in solely the denom-
inator. Choosing the arbitrary locations r′ ∈ [1,nb] and m′ ∈ [1,n f ] for the position of θ0 in
these respective cases, the derivative of (4.24) evaluated at θ = θ0 then respectively reads

|∇θ G(z,θ)|2θ=θ0
=

1
|1+A(e−iω)|2 , (4.26)

and

|∇θ G(z,θ)|2θ=θ0
=

|B(e−iω)|2
|1+A(e−iω ,θ0)|4

. (4.27)
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From these two expressions we observe the following. First, (4.26) and (4.27) do not
depend on r′ and m′, respectively. Thus, if the unknown parameter resides in the numerator
(denominator), the optimal frequency is the same for all r′ ∈ [1,nb] (resp. m′ ∈ [1,n f ]), i.e.,
is invariant to the position of θ0 in the numerator (resp. denominator). Second, observe that
the expression (4.26) and (4.27) are different. From these two observation we conclude
that there are only two different optimal frequencies: one in the case in which θ0 resides
in the numerator, and one in the case where θ0 resides in the denominator.

Remark 4.5 It is typical in black-box modelling to consider all the coefficients {br}nb
r=1

and {am}n f
m=1 as independent parameters. However, some rational transfer functions

G(z,θ0) arise from discretising a set of partial differential equations that describe a phys-
ical process (we will see examples in Chapter 6). For such systems, the coefficients in
the transfer function G(z,θ0) are a function of the physical parameters and therefore not
independent. The above analysis then no longer holds: the optimal frequency will depend
on the locations these physical parameters occupy in the numerator and/or denominator.

Remark 4.6 This analysis only holds for discrete-time systems.

Numerical Illustration

The aim of this section is to compare our uni-parametric analytical solution of Section 4.2
with the solution of the convex numerical method detailed in Chapter 3. To this end, we
consider the true system

G0(e−iω) =
a1(1−θ0)e−iω

1−θ0e−iω ,

and H(e−iω) = 1, where a1 = 10 is the steady-state gain, σ2
e = 4.0 is the variance of

the noise e[n], and θ0 = 0.45 is the unknown parameter that we need to identify with a
least-costly experiment. We first consider the closed-loop setting with a PI controller C(z)
defined by the constants Kp = 0.00853 and Ki = 0.0171. With this controller R0 = 3.0826.

The optimisation problem we consider is (4.16)-(4.17), with L (e−iω ,θ0) given by
(3.3). The parameters defining the optimisation problem are: N = 200, α = 0.1, β = 0.7,
and Radm = 1000.

We first consider the theoretical predictions. The optimal excitation is here equal to
ropt [n] = 0.5033sin(ωoptn+ φ) with an arbitrary phase shift φ and with ωopt = 1.8903
rad/s. The frequency ωopt can be determined by inspection of the frequency response of
(4.25) or, alternatively, via straightforward but tedious algebraic manipulations leading to
the expression

ωopt = arccos
[

1− (1−θ0)
2

2βθ0

√
β (β +αa2

1)

]
.

The cost of the identification corresponding to this identification is equal to Jopt = 0.4580.
We will compare this optimal excitation with the excitation that we obtain via convex

optimisation. The LCED problem is solved with an FIR parameterisation (c.f. (3.5)):
Φr(ω) = ∑

M
m=−M cme−iωm, where c−m = cm are to-be-determined coefficients and M the

order. Note that, for finite M, this class does not contain all possible spectra and, in
particular, does not contain the optimal spectra (4.18).

We have solved the LCED problem in this example using this numerical routine for
different values of M, i.e., M = {10,25,50,75}. The obtained spectra are depicted in Fig.
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Figure 4.3: Optimal excitation spectra for M = 10 (red), M = 25 (green), M = 50 (blue), and M = 75 (purple). The black vertical
line is the analytical optimal spectrum. The parameter values for the simulations are θ0 = 0.45, N = 200, a1 = 10, σ 2

e = 4.0, and
Radm = 1000. Observe that when M is increased, the numerical spectra converge to the analytical solution.

4.3 and we observe that, for small values of M, the obtained spectra are relatively far
from the optimal one which is a Dirac pulse at ωopt = 1.8903 rad/s. This discrepancy
is also observed in the optimal identification cost that are respectively given by Jopt =
{0.4601,0.4584,0.4581,0.4580} for these four values of M. We see that only for the large
values of M the cost converges to the optimal one, i.e., the one obtained with the sinusoid
excitation.

4.4 Summary
In this chapter we have derived analytical solutions for uni- and bi-parametric models.
These are models in which respectively one or two parameters are unknown. In particular,
these solutions have provided insight into the selection of the optimal frequency and am-
plitude. The analytical solutions can be used to speed up the numerical methods by hard-
coding the solutions into the LCED algorithms, and to e.g. easily address the chicken-and-
egg issue discussed in Chapter 3. This is particularly useful in LCED problems containing
additional design variables next to the spectrum Φr, e.g. degrees of freedom in the experi-
ment set-up that we will face in Chapter 7. In such a case, the LCED problem needs to be
solved many times. Thus, for uni- and bi-parametric models, the analytical solutions can
be used in such situations and deliver the optimal design variables faster than is currently
possible.

There remain several problems that need to be solved. First, it would be fruitful to
have a condition that states when the single-sine solution for bi-parametric models is not
optimal. Second, it would be interesting to find analytical solutions for models with three
or four unknown parameters. Since no generic analytical expressions exists for eigenval-
ues of matrices of dimension four or higher, it is probably unlikely that analytical LCED
solutions exist for models with more than four unknown parameters. A formal proof of
this hypothesis is an interesting subject for future work.





5

Handling Unknown and Nonlinear
Feedback Controllers in LCED

”Every great and deep difficulty bears in itself its own solution. It forces us to
change our thinking in order to find it.” - Niels Bohr

5.1 Introduction
The previous chapters assumed that an open-loop system is closed by a feedback mech-
anism containing a known, linear time-invariant (LTI) controller C(z). As a result, the
Least-Costly Experment Design (LCED) problem (3.1)-(3.2) is affine in the power spec-
trum Φr of the to-be-designed excitation signal r[n]. The optimisation problem is therefore
convex can consequently be solved by parameterising the power spectrum as e.g. a multi-
sine (3.6) or filtered white-noise signal (3.5); see Chapter 3.1

There are however two important conditions that must be met in order to solve (3.1)-
(3.2). First, as explained in Section 3.2.2, the inverse covariance matrix (2.9) is a function
of the true parameter vector θ0, which we do not know and intend to estimate. This
chicken-and-egg issue can be resolved by replacing θ0 with an initial estimate θinit that is
obtained from a previous experiment. The presence of such an estimate is thus the first
condition. Secondly, the inverse covariance matrix is a function of the sensitivity function
of the closed-loop system, see (2.11). Thus, the sensitivity function must also be known,
and is the second condition.

As seen in the previous chapters, when the system is in closed loop with a known LTI
controller the sensitivity function is trivially calculated. The LCED problem is then affine
in Φr and therefore convex. However, there are many systems that are in closed loop with
an unknown or nonlinear controller. For instance, industrial processes regulated by Model
Predictive Controllers, which are not LTI; and a dynamical network, in which the feedback
from the output to the input consists of many unknown LTI transfer functions that are con-
nected in parallel and/or in series. In such complex systems, an expression for the inverse
covariance matrix that is linear in Φr cannot be calculated with the steps taken in Section
2.2.2. Consequently, this limits the applicability of the LCED framework to systems with

1Parts of this chapter have been published in (Potters et al. (2014)).
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known LTI controllers.

This chapter is therefore concerned with the generalisation of the LCED framework to
systems that are regulated by unknown linear, and unknown and/or implicit nonlinear con-
trollers. We will consider only the LCED problem (3.1)-(3.2) for the Direct Method, see
Section 2.2.2. An advantage of this identification technique is that the identification pro-
cedure does not require the knowledge of the controller present in the loop during the
identification experiment, and can thus be applied to systems with any type of stabilising
controllers (e.g. unknown, implicit, piece-wise linear, or nonlinear). To this end, we intro-
duce two approaches to tackle the problem. Both methods make use of a prior experiment
from which, among other things, an initial estimate θinit is obtained that is subsequently
used to replace θ0 in the inverse covariance matrix expression in the constraints (3.2). We
have thus satisfied the first condition described above.

The first approach, called the Sensitivity Method, pertains to the estimation of the sen-
sitivity function S0(z) with the use of the closed-loop input u and (non-optimal) excitation
data r from the experiment that is used to find the initial estimate θinit . The estimate Sinit(z)
is used to replace the unknown true sensitivity function S(z,θ0) in the inverse covariance
matrix. The LCED problem is then again convex can be solved numerically. This approach
is introduced in Section 5.3.1.

The second approach, introduced in Section 5.3.2, is the Stealth Method. It involves
modifying the feedback mechanism in the classical closed-loop identification scheme in
such a way that the (possibly unknown, implicit and/or nonlinear) controller does not sense
the excitation signal (hence the name Stealth). If this is the case, the signal r is applied
in an open-loop fashion to the nominal closed-loop system G0 and, consequently, the de-
pendence of P−1

N,θ on Φr becomes independent of the expression of the controller (i.e., the
sensitivity function effectively becomes S0(z) = 1). The inverse covariance matrix expres-
sion is then again affine in the power spectrum Φr, and convex optimisation techniques
can be readily applied, even though the true system is operated by an unknown, implicit or
nonlinear controller. For the above property to hold, we will show that the feedback signal
to the controller should be changed to y−G(q,θ0)r. Evidently, this scheme requires the
knowledge of the unknown system G0 = G(z,θ0). We will replace G(z,θ0) by the initial
estimate Gid(z) = G(z,θinit) of G0, where θinit is the initial estimate from the first experi-
ment that is used to tackle the chicken-and-egg issue.

The chapter is organised as follows. After the introduction of the two approaches in Sec-
tions 5.3.1 and 5.3.2, we consider three numerical studies. The first one illustrates the use
of Stealth Identification on a linear system in closed loop with an MPC. The second study
pertains to a system regulated by a nonlinear controller, and in which we compare our two
approaches. The same is done in the third study, but instead a comparison is performed on
a linear dynamical network.

5.2 Reminder: Experiment Design in Closed Loop with
Known LTI Controller

This section shows how LCED can be applied to known linear controllers. To this end, we
briefly recapitulate the Direct Method for the closed loop as shown in Fig. 5.1, and recall
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Figure 5.1: Schematic overview of the true closed-loop system. The input u enters the true system G0. The resulting signal that
leaves the system is perturbed with the coloured noise H0e, leading to the output y. This output is fed back to the system through
the controller C.

how the LCED framework is formulated for this closed loop; see also Chapter 2.
We consider the case of a LTI controller C(z) regulating a single-input single-output

(SISO) LTI true system S , consisting of the output y[n] and input u[n]:

y[n] = G(q,θ0)u[n]+H(q,θ0)e[n], (5.1)
u[n] = r[n]−C(q)y[n]. (5.2)

Here, θ0 is the unknown true parameter vector with dim(θ0) = κ , e[n] is white noise with
variance σ2

e ; G(z,θ0) = G0 and H(z,θ0) = H0 are stable, discrete-time transfer matrices;
and H(z,θ0) is monic and minimum-phase. Lastly, we assume that G0(q) or C(q) has at
least one sample delay. Equations (5.1)-(5.2) may also be written as

y[n] = S(q,θ0)G(q,θ0)r[n]+S(q,θ0)H(q,θ0)e[n], (5.3)
u[n] = ur[n]+ue[n] = S(q,θ0)r[n]−S(q,θ0)C(q)H(q,θ0)e[n], (5.4)

upon introducing the sensitivity function of the closed-loop system (G(q,θ),C(q)):

S(q,θ) =
1

1+C(q)G(q,θ)
. (5.5)

We define S0(z) = S(z,θ0) as the sensitivity function of the closed-loop system (G0(z),
C(z)). As can be seen from (5.2) (see also Fig. 5.1), the closed-loop system is excited via
an external signal r[n] that is added to the output uC[n] =−Cy of the controller. Applying
the excitation signal r[n] for n = 1, . . . ,N to the system and measuring the signals ZN =
{u[n],y[n]}N

n=1, a model
{

G(z, θ̂N),H(z, θ̂N)
}

of the true system can be identified. The
parameter vector θ̂N is defined as θ̂N = argminθVid(θ), with

Vid(θ) =
1
N

N

∑
n=1

ε
2[n;θ], (5.6)

where

ε[n;θ] = H−1(q,θ)(y[n]−G(q,θ)u[n]) (5.7)

=
G0(q)−G(q,θ)

H(q,θ)
S0(q)r[n]+

H0(q)
H(q,θ)

1+C(q)G(q,θ)
1+C(q)G0(q)

e[n] (5.8)
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is the prediction error; see (2.4). We assume that r is sufficiently exciting and that the
model has been identified in a model structure M containing the true system (5.1)-(5.2),
i.e., S ∈M . In this way, the parameter vector θ̂N identified through (5.7) and (5.6) will
be asymptotically normally distributed around the true parameter vector θ0; see Chapter
2. From this last equation, we obtain the gradient ψ[n;θ′] = ∇θε[n;θ] |θ=θ′ evaluated at
θ = θ0:

ψ[n;θ0] = Fr(θ0)r[n]+Fv(θ0)e[n], (5.9)

in which the vectors Fr and Fv are defined by (2.11) and (2.12). We recall these expres-
sions here for convenience:

Fr(q,θ0) = H−1
0 (q)S0(q)[∇θG(q,θ)]θ=θ0 (5.10)

Fv(q,θ0) = H−1
0 (q)[∇θH(q,θ)]θ=θ0 −C(q)S0(q)[∇θG(q,θ)]θ=θ0 . (5.11)

Notice that both expressions depend on the controller C(q) and/or the controller-dependent
term S0(q). Since the signals r[n] and e[n] are independent, the expressions (5.9), (5.10)-
(5.11) lead to the strictly positive definite covariance matrix PN,θ (c.f. (2.7)) of which the
inverse in the frequency domain is given by (2.9), i.e.,

P−1
N,θ = P

−1
r,N,θ+R0 =

N
2πσ2

e

∫
π

−π

Fr(eiω ,θ0)F
H
r (eiω ,θ0)Φr(ω)dω (5.12)

+
N
2π

∫
π

−π

Fv(eiω ,θ0,θ0)F
H
v (eiω ,θ0)dω,

with Fr(e−iω ,θ0) and Fv(e−iω ,θ0) defined in (2.11) and (2.12), and Φr(ω) is the spec-
trum of the excitation signal. The matrix R0 is defined by the second integral on the right
hand side of (5.12).

With the expression (5.12) we can solve the LCED problem (3.1)-(3.2), which we here
recall for convenience:

min
Φr

1
2π

∫
π

−π

L (e−iω ,θ0)Φr(ω)dω (5.13)

subject to

∀ j = 1, . . . ,J : P−1
N,θ[Φr]� Radm( j), (5.14)

in which P−1
N,θ the κ×κ-dimensional inverse covariance matrix defined by (5.12), Radm( j)

equally-sized matrices, and J ∈ N+ an application-specific constant that sets the number
of constraints. Examples of LMI constraints can be found in Section 3.2.3.

A parameterisation such as (3.5) or (3.6) should be chosen; in that case the problem can
be solved with efficient numerical methods, as explained in Chapter 2. Due to the chicken-
and-egg issue (see Section 3.2.2) the vector θ0 should be replaced by an initial estimate
θinit obtained from a previous experiment. Furthermore, the LTI controller C(z) should be
known. Indeed, otherwise, the operators Fr(e−iω) and Fv(e−iω) cannot be evaluated. The
LCED problem can in that case not be solved.

To obtain an initial estimate θinit , a short identification experiment is performed prior
to the actual optimal identification experiment. To this end, we apply an excitation signal
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Figure 5.2: Schematic overview of the stealth identification set up for a closed-loop system with a linear (possibly implicit or
unknown) controller. The excitation signal r is added to the input u, which subsequently enters the true system G0. The output
y−Gid r enters the linear controller. The output is disturbed with the coloured noise v.

{rinit [n]}Ninit
n=1 and collect the data {uinit [n]}Ninit

n=1 and {yinit [n]}Ninit
n=1 and subsequently use (5.6)

to obtain θinit = θ̂Ninit .

In the sequel, we will give two methods to approximate the dependence of PN,θ as a
function of Φr, i.e., P−1

r,N,θ. First we consider the case of an unknown LTI controller and
then in the case of a (possibly unknown) nonlinear controller. Subsequently, we will give
methods to determine the component R0 appearing in P−1

N,θ, i.e., the contribution to the
parameter accuracies due to the noise e.

5.3 Unknown LTI controllers

5.3.1 Sensitivity Method

In the expression of Fr (5.10), the only dependence on C(q) is the sensitivity function
S0(q). Consequently, if we would estimate S0, we could use this estimate in the expression
of Fr and be able to design an optimal spectrum Φr,opt(ω).

For this purpose, we can use the same experiment as the one that yielded θinit . Indeed,
from (5.4) and the obtained data {rinit [n],uinit [n]}Ninit

n=1 , we can identify S0 using open loop
prediction error identification. This identification yields the model Sinit that can be used
together with θinit in the expression of Fr.

This approach does not allow us to find an expression of R0 since Fv is a function of
C(q) too. However, since R0 � 0, we can e.g. neglect it for experiment design ((5.14)
is then replaced by P−1

r,N,θ �Radm( j) for all j). The matrix R0 can however also be esti-
mated via the methods given in Section 5.5.

We can thus solve (5.13)-(5.14) and obtain an optimal input spectrum Φr,opt . A realis-
tation of the spectrum can then be applied to the closed-loop and a model can be identified
using the Direct Method. Since ropt can be parameterised as a filtered white noise signal,
it will be of sufficient high order of excitation and thus we can guarantee a consistent es-
timate. However, due the approximation above (Sinit ≈ S0; θinit ≈ θ0), we cannot fully
guarantee that the constraints (5.14) are satisfied. This was also the case in Section 5.2,
where for linear known controllers an initial estimate is also required.
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5.3.2 Stealth Method

Let us now consider an alternative manner to circumvent the LCED requirement of know-
ing the controller C(q). Instead of estimating the sensitivity function as done in the pre-
vious section, we here modify the feedback mechanism in the classical closed-loop iden-
tification scheme in such a way that the unknown controller does not sense the excitation
signal (hence the name Stealth). If this is the case, the signal r is applied in an open-loop
fashion to the nominal closed-loop system G0 and, consequently, the dependence of P−1

N,θ
on Φr becomes independent of the expression of the controller.

To this end, consider Fig. 5.2 where Gid is given by G(z,θinit), and in which θinit is
the initial guess of θ0 (see end of Section 5.2). The input-output relations are for this case
defined by

u[n] = ur[n]+ue[n] =
1+C(q)Gid(q)
1+C(q)G0(q)

r[n]− C(q)H0(q)
1+C(q)G0(q)

e[n],

y[n] = yr[n]+ ye[n]

= G0(q)
1+C(q)Gid(q)
1+C(q)G0(q)

r[n]+
H0(q)

1+C(q)G0(q)
e[n], (5.15)

where ye[n] and ue[n] are the output and input signals that are generated by the closed
loop (G0(z),H0(z),C(z)) without the presence of the excitation signal r[n]. Notice the
difference between the above equations and (5.3)-(5.4).

To be able to design Φr when C(z) is unknown we will make the assumption that
Gid = G(z,θinit) = G0(z). This is the same assumption as in Section 5.2: θinit ≈ θ0. With
these assumptions, (5.15) becomes

u[n] = r[n]− C(q)H0(q)
1+C(q)G0(q)

e[n], (5.16)

y[n] = G0(q)r[n]+
H0(q)

1+C(q)G0(q)
e[n]. (5.17)

We observe the following from these last two equations. The signal r[n] is now applied as
if it was in open loop identification (the controller does not see r[n]!). The contribution of
the noise e is as in classical closed-loop identification (see (5.3)-(5.4)). Substituting the
above two relations into (5.7) yields

ε[n;θ] =
G0(q)−G(q,θ)

H(q,θ)
r[n]+

H0(q)
H(q,θ)

1+C(q)G(q,θ)
1+C(q)G0(q)

e[n],

from which it follows that

ψ[n,θ0] = F r(q,θ0)r[n]+F v(q,θ0)e[n] =
∇θG(q,θ) |θ=θ0

H0(q)
r[n]+Fv(θ0)e[n].

Note that F v = Fv is the same as its expression in Section 5.2. From the above equation
the inverse covariance matrix for the Stealth identification scheme reads

P−1
N,θ =

N
2πσ2

e

∫
π

−π

F r(z,θ0)F
H
r (z,θ0)Φr(ω)dω +R0, (5.18)
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withR0 identical to the one defined in Section 5.2. This approach does not allow us to find
an expression of R0 since Fv is a function of C(q). However, like in the previous section,
since R0 � 0, we can e.g. neglect it for experiment design ((5.14) is then replaced by
P−1

r,N,θ �Radm( j) for all j). The matrixR0 can however also be estimated via the methods
given in Section 5.5.

Using (5.18) in the LCED optimisation problem then leads to an optimal input sig-
nal ropt that will be applied as shown in Fig. 5.2 on the true system. Here we will use
Gid(z) = G(z,θinit). Since ropt is filtered white noise the data will be sufficiently informa-
tive. Theorem (5.1) shows that the estimate will be consistent for all stable Gid when ropt
is a filtered white noise.

Theorem 5.1 Assume that the true system S is operated as in Fig. 5.2 and that the con-
sidered closed loop is stable (condition D1 in (p. 249, Ljung (1999))). Consider a model
set M (θ) := {G(z,θ),H(z,θ)} that contains the true model, i.e., S ∈M . Furthermore,
we assume that our dataset ZN is sufficiently informative w.r.t. M , that there is a delay in
either the controller or in both G0(z) and G(z,θ), and that M (θ) is globally identifiable
at θ0.

Then, the stealth identification scheme yields a consistent estimate of the true param-
eter vector θ0, even when Gid 6= G0.

Proof: Under the above assumptions, we have (cf. Theorem 8.2 in (Ljung (1999))) that
θ̂N → Dc w.p. 1 as N→ ∞, where

Dc = argmin
θ

V̄ (θ) =

{
θ | V̄ (θ) = min

θ′
V̄ (θ′)

}
,

with
V̄ (θ) = Ē

1
2

ε
2[n;θ].

The set Dc contains all parameter vectors θ∗ that minimise the quadratic criterion. For
consistency, we now need to prove that the set Dc only contains the true parameter θ0, i.e.
Dc = {θ0}. In other words, that θ0 is the unique minimiser of the quadratic criterion (cf.
Theorem 8.3 in Ljung (1999)).

The prediction error corresponding to the Stealth identification method follows straight-
forwardly from (5.15) and reads

ε[n;θ] =
G0(q)−G(q,θ)

H(q,θ)

(
1+C(q)Gid(q)
1+C(q)G0(q)

)
r[n]+

H0(q)
H(q,θ)

(
1+C(q)G(q,θ)
1+C(q)G0(q)

)
e[n].

(5.19)

Using the assumption on the presence of a delay in either C(z) or in both G(z,θ) and
G0(z), the power of ε reaches its minimum at θ= θ0. It is furthermore a unique minimiser
due to the assumption of an informative data set.

The above result is in fact straightforward. Indeed, (5.19) is almost equivalent to the
expression (5.8) of ε[n;θ] as a function of r and e for classical Direct closed-loop identifi-
cation. The only difference is that the transfer function (1+CGid)/(1+CG0) is replaced
by S0. Since both S0 and (1+CGid)/(1+CG0) are fixed (i.e. independent of θ) and
non-zero transfer functions, the consistency properties are the same in both cases. 2
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Figure 5.3: Stealth identification method with a zero excitation signal.

Remark 5.1 The proof also holds for other identification criteria; see (Ljung (1999)) for
details. Furthermore, when Gid(z) = 0, the prediction error (5.19) reduces to the expres-
sion one would have obtained from the Direct Method for a closed-loop system. Addi-
tionally, when Gid(z) = G0(z), we see that the first term on the right hand side becomes
H−1(z,θ)(G0(z)−G(z,θ)r[n]). This term is now equivalent to the one which would have
been obtained with identification of an open-loop system.

5.4 Nonlinear Controllers

5.4.1 Sensitivity Method

In the case of linear systems regulated by nonlinear controllers we evidently have nonlinear
sensitivities (i.e., rational, finite-order transfer functions S(q) do not exist). Even though it
will of course lead to suboptimal values for the excitation spectrum, we can still apply the
Sensitivity Method as introduced in Section 5.3.1 to such systems, by estimating a linear
approximation S(q,θinit) of the nonlinear sensitivity.

5.4.2 Stealth Method

The Stealth Method as introduced in Section 5.3.2 still holds for nonlinear controllers.
Indeed, if Gid = G0 in Fig. 5.4, the input signal u is given by

u[n] = r[n]+ue[n],

where ue[n] = f (y[n]) is the input signal when r = 0; see Fig. 5.3. The signals r and ue are
thus independent. Consequently, we may write the prediction error as

ε[n;θ] =
G0(q)−G(q,θ)

H(q,θ)
r[n]+

G0(q)−G(q,θ)
H(q,θ)

ue[n]+
H0(q)

H(q,θ)
e[n]

since the term in r is independent of the rest. The contribution of Φr to P−1
N,θ can be

approximated as in the linear case. The contribution of the noise, R0, is once again the
contribution when r = 0. Using similar arguments as for the LTI controller case and using
the results in (Ljung (1978)), we will obtain a consistent estimate of θ0 even if Gid 6= G0.
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Figure 5.4: Schematic overview of the Stealth identification scheme for nonlinear controllers. The classical closed-loop scheme
is adapted by subtracting the signal Gid r from the output y that would normally directly enter the nonlinear controller f (y). With
the Stealth scheme, the signal y−Gid r enters the controller.

5.5 The Matrix R0

In the above cases of least-costly experiment design for closed-loop systems with (possibly
unknown) linear and nonlinear controllers, the matrixR0 is the contribution of the noise to
the covariance matrix for a Direct closed-loop identification with r = 0. Here we provide
several options to compute this matrix:

1. As already mentioned above, the positive-definite matrix R0 can be neglected. In
this case, we consider the LMI P−1

r,N,θ � Radm in the problem (5.13)-(5.14). The
optimal input signal will have a higher power than the solution resulting from the
problem with the LMI P−1

N,θ �Radm. However, the parameter accuracy constraints
will be satisfied.

2. We can collect data in normal operation (i.e. r = 0 in the identification experiment),
and subsequently estimate θ̂N if the collected data is sufficiently informative. The
resulting covariance matrix isR−1

0 .

3. If the system cannot be estimated with r = 0 (i.e. with data generated from normal
operation), we can add a non-zero excitation signal r to the closed-loop system,
identify θ̂N , and estimateP−1

N,θ (using the collected data). Using the known spectrum
of the excitation signal, the initial estimate θinit and the contribution P−1

r,N,θ can be
computed using either (5.18) in the Stealth situation or (5.12) in other situations. In
this latter case, the initial estimate Sinit(q) of the sensitivity function can be used to
evaluate Fr(q). Finally,R0 can be estimates as:

R0 ≈ P̂−1−P−1
r,N,θ,

where P̂ is the estimate of the covariance matrix computed with the data. Note that
the initial experiment (i.e. the one leading to θinit ) could also be used to estimate
R0 in this way.
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5.6 Numerical Study 1: A System Controlled by MPC

5.6.1 Introduction

In this section we test the Stealth identification framework on a SISO system regulated by
a model predictive controller. We verify whether the least-costly framework can indeed
yield models that obey P−1

N,θ � Radm for Gid = G0 as well as Gid 6= G0 by comparing
four identification experiment types. For each experiment type we perform Monte Carlo
simulations. We will limit ourselves to only the Stealth method as we will explore the
sensitivity estimation method in the next numerical studies. In the following subsections,
we introduce the data-generating system, the least-costly experiment design problem, and
finally we show the identification results.

5.6.2 The Data-Generating System

We consider a data-generating system (5.1)-(5.2) embedded in a Box-Jenkins (BJ) model
structure M =

{
M(θ),θ ∈ R6

}
. The family of models M(θ) in this structure is given by

G(z,θ) =
θ1z−1 +θ2z−2

1+θ5z−1 +θ6z−2 , and H(z,θ) =
1+θ3z−1

1+θ4z−1 .

A Gaussian white-noise signal e[n] with variance σ2
e = 0.5 is added through the filter

H(z,θ0), yielding v = H(q,θ0)e[n]. The noise realisation e[n] is identical for all four
experiment types during a single Monte Carlo step. At each new Monte Carlo step a
new white-noise signal is randomly generated. This allows us to compare precisely the
identification results. The true system is defined as S0 =M(θ0)∈M , where θ0 = (0.5, 0,
0,−0.6,−0.6, 0.8)T (κ = dim(θ0) = 6). The sampling times Ts = 1 second.

MPC algorithm

The data-generating system (5.1)-(5.2) is operated in closed loop with an MPC controller
(Maciejowski (2002)) based on our commissioning model (Ginit ,Hinit)∈M , where θinit =
(0.15, 0.05, 0.92, 0.92,−0.30, 0.71)T . We denote this controller by C(Ginit). A Bode
diagram of Ginit and the data-generating system from Section 5.6.2 is shown in Fig. 5.5.

The MPC is tuned so that we get sufficient performance for the commissioning model
(Ginit ,Hinit). We define the model predictive controller with the MPC function in Matlab.
The MPC is set to have a prediction horizon of Ny = 40 and a control horizon of Nu = 20.
The output variable y has a weight of Q = 1.0, and the input a weight of R = 0.1. The
constraint on the input u is −3 ≤ u ≤ 3. However, as we want to add an excitation signal
to nominal operation, we reduce the bounds to −2.5≤ u≤ 2.5 to allow system excitation.
There are no constraints on the output. The cost function of the MPC is of standard form
(i.e. output reference tracking).
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Figure 5.5: Bode diagram of the data-generating G(z,θ0) system (black) and commissioning model G(z,θinit ) (red).

5.6.3 Least-Costly Experiment Design

We now define the least-costly experiment design problem. The chosen objective function
of our LCED problem is given by (5.20) and is of the form (3.3), i.e., we choose

Pyr +Pr =
1

2π

∫
π

−π

(Φyr +Φr) dω, (5.20)

where Pyr and Pr are the power of yr[n] = G0(q)r[n] and of r[n], respectively. It rep-
resents the cost of the induced perturbations on u and y when we assume Gid = G0 in
the Stealth framework (see (5.16)-(5.17)). The LCED constraint (3.2) is a performance-
relevant one, defined in Section 3.2.3. In particular, we chose the same application cost as
in Example 3.1, i.e.,

Vapp(θ) =
1

Nwin

Nwin

∑
n=1

(y[n;G(θ0),C(θ)]− y[n;G(θ0),C(θ0)])
2 , (5.21)

where the noise-free output y[n;G(θ0),C(θ)] represents the closed-loop output of the
closed loop (G(θ0),C(θ)) at time instance n. For example, y[n;G(θ0),C(θinit)] is the
output at time instance n from the above-defined data-generating system and MPC con-
troller. The constraint P−1

N,θ �Radm for the performance-relevant constraint is then given
by (3.10), i.e.,

P−1
N,θ �Radm =

γχ2
α(6)
2

V ′′app(θ0),
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Figure 5.6: Optimal excitation spectrum Φr,opt (ω) that is calculated in Section 5.6.3.

in which we choose N = 104, α = 0.99, γ = 400, and V ′′app(θ0) the Hessian of (5.21) at
Nwin = 100. The resulting matrixRadm then reads

Radm =


1.195 −0.0352 0.0124 0.0202 −0.066 −0.2207
−0.0352 1.5146 −0.004 0.0065 −0.439 0.429
0.0124 −0.004 0.00067 0.0004 0.0087 0.0087
0.0202 0.0065 −0.0004 0.011 −0.0102 0.0063
−0.066 −0.439 0.0087 −0.0102 0.0395 −0.74
−0.2207 0.429 0.0087 0.0063 −0.74 0.4501

 .

We have now defined all terms in the LCED problem (3.1)-(3.2). The problem is now
solved using a finite-dimensional parameterisation of the spectrum Φr(ω) and by replacing
θ0 with θinit in order to circumvent the chicken-and-egg issue. We choose the 30-th order
FIR filter defined by (3.5), which defines the term P−1

r,N,θ[Φr] (c.f. (5.18)) in P−1
θ [Φr] =

P−1
r,N,θ[Φr]+R0. The matrixR0 is estimated with an identification experiment in nominal

closed-loop operation simulation (i.e. r = 0 for the entire experiment). The experiment
length is N = 104 (when r 6= 0). Hence, the optimal excitation spectrum Φr is computed
such that P−1

r,N,θ[Φr]�Radm−R0. The optimal spectrum Φr,opt is shown in Fig. 5.6.

5.6.4 Identification Results

We now compare different identification experiments. Experiments I and II use the same
optimal excitation signal as shown in Fig. 5.6, whereas experiments III and IV use a
white-noise excitation signal. We validated that the input constraints −3 ≤ u ≤ 3 were
not violated. The identification results are compared with the various measures shown in
Table 5.1; its values are averages over 250 Monte Carlo simulations (each Monte Carlo
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Experiment I II III IV
104||θ̂N−θ0||2 2.45 8.28 4.15 2.95
λmin(P

−1
N,θ−Radm) 267 174 -3003 -3029

Table 5.1: The different measures calculated for four types of experiments. The tabulated values are averaged over 250 Monte
Carlo simulations. The first row gives the error between the estimate θ̂N and the true parameter vector θ0. The second row
indicates whether or not the constraint P −1

N,θ �Radm is satisfied: when the minimal eigenvalue is positive (negative) the above
constraint is satisfied (not satisfied).

simulation has a different noise realisation on the simulated output)2. The first row in
the table shows the average mean-square error of the identified parameter vector θ̂N com-
pared with the true vector θ0. The second row shows the averaged minimal eigenvalue
λmin(P

−1
N,θ−Radm). When it is negative, the constraint in the optimisation problem, i.e.,

P−1
N,θ �Radm, is not satisfied. We now describe the experiments I-IV in detail.

Experiment I. Optimal input signal ropt and Gid(z) = G0(z)

The first identification experiment considers Gid = G0, see Fig. 5.4. This is an experiment
in which the controller will not notice the excitation signal at all. As excitation signal, we
add ropt as computed in Section 5.6.3 and collect the data ZN = {u[n],y[n]}N

n=1. This data
is used in (5.6) to obtain an estimate θ̂N of the true parameter vector θ0. We performed
250 Monte Carlo simulations of this experiment type, the results of which are reported
in Table 5.1. From this table, we see that the average estimation error is small, and that,
on average, the estimated model G(z, θ̂N) is sufficiently accurate for performance-relevant
control. Indeed, the related performance-relevant constraint in the LCED optimisation
problem used in the previous section is satisfied, since the average minimum eigenvalue
of the matrix P−1

N,θ−Radm is positive; see Table 5.1.

Experiment II. Optimal input signal ropt and Gid(z) = G(z,θinit)

This second identification experiment is identical to Experiment I, with the difference
being that we instead use Gid = G(z,θinit), i.e., the initial guess θinit available at commis-
sioning was used. (It is the same parameter vector that is used in the MPC controller, see
Section 5.6.2). The excitation spectrum is equal to that of experiment I. The Monte Carlo
results are depicted in Table 5.1. Notice that again a good model is found that satisfies
P−1

N,θ �Radm, although the estimation error is larger than for Experiment I.

Experiment III. White-noise input signal and Gid(z) = G(z,θinit)

This third experiment type is different from the above two in the sense that we no longer
use the optimal input signal ropt as computed in Section 5.6.3. Instead, we generate a
zero-mean Gaussian white-noise input signal with a power that is equal to that of the
optimal input signal used above. Experiment III considers Gid(z) = G(z,θinit), see Fig.
5.4. Analogous to experiments I and II, we apply in this case the white-noise input signal
for the same duration as the previous two experiments, and collect the input-output data
in ZN = {u[n],y[n]}N

n=1. This data is used with (5.6) to obtain an estimate θ̂N . Table

2We use Monte Carlo simulations to validate accuracy constraints since a closed-form analytical expression
of the inverse covariance matrix is not available for systems with nonlinear controllers.
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5.1 shows the Monte Carlo averages of e.g. the estimation error. Although a consistent
estimate is obtained, we observe that the average minimum eigenvalue is negative. Thus,
the performance-relevant constraint P−1

N,θ �Radm is not satisfied, even though we used the
same input power as in Experiments I and II. This clearly illustrates the benefit of LCED:
with equal power, higher parameter accuracies can be obtained.

Experiment IV. White-noise input signal and Gid(z) = 0

This last experiment type is identical to Experiment type III, the difference being that we
instead use Gid(z) = 0. It means that the excitation signal will be noticed by the controller.
We observe from the Monte Carlo averages in Table 5.1 that also in this case the parameter
accuracy constraint is not satisfied.

From Table 5.1, we conclude that the least-costly signals deliver precise models of the
true system satisfying P−1

N,θ �Radm. The converse holds for the equally-powered white-
noise signal excitations. These latter signals deliver consistent parameter estimates, but do
not lead to the user-imposed required model accuracies.

5.7 Numerical Study 2: A System Regulated by a Nonlin-
ear Controller

5.7.1 Introduction
In this section we apply the Stealth Method to a linear system that is regulated by an
explicit nonlinear controller. In particular, we look at a P controller that is preceded by a
nonlinear filter on the system’s output, see Fig. 5.7. This set-up is inspired by the work
of Fromion and Scorletti (2002). In this figure, the dashed block defines the nonlinear
controller, G0 is the true system, v[n] is coloured noise, y[n] is the noise-disturbed output,
r[n] the excitation signal, and Gid a transfer function that lies in the same model family as
G0. The diagram without the block Gid represents the classical closed-loop identification
scheme. We will also consider in this case study the Sensitivity Method introduced in
Section 5.2. For this method, we can use the same set-up, but in which Gid = 0.

As in the previous numerical study, we first define the data-generating system, the
least-costly experiment design problem, and then discuss the identification results.

5.7.2 The Data-Generating System
We consider the model set M = {G(z,θ),H(z,θ)}, where

G(z,θ) =
θ1z−1 +θ2z−2

1+θ3z−1 +θ4z−2 , H(z,θ) =
1+θ5z−1 +θ6z−2

1+θ7z−1 +θ8z−2 .

The true system, denoted S ∈M , is then defined by setting θ = θ0 = (0.0852,0.049
−1.735,0.7513,0.067,−0.04,−0.817,−0.155)T . The noise model H(z,θ0) then defines
the coloured noise, being v[n] = H(q,θ0)e[n], where e[n] is a zero-mean Gaussian white
noise realisation with variance σ2

e = 7.5× 10−4. The transfer function Gid = G(z,θinit),
where θinit is a user-defined initial guess of θ0. The sampling time is Ts = 1 second.
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Figure 5.7: The closed-loop system as used by Fromion and Scorletti (2002), but in which the Stealth scheme is implemented. If
Gid = 0, we obtain the original closed loop (to which the Sensitivity Method is applied). The true system is indicated by G0 and
the nonlinear controller by the elements in the dashed square.

Nonlinear controller

Next, we define the nonlinear controller. The block K0 in Fig. 5.7 represents a traditional
PI controller with the following structure:

K0(z) =
τzz+1

z(τcz+1)2 , (5.22)

with τz and τc tuneable constants. The terms proceeding the block K0 in Fig. 5.7 act as a
variable gain that is a function of the output y[n]. This variable gain, denoted k(y[n]), reads

k(y[n]) = k1 (y[n]− k2sat(y[n])) , (5.23)

with k1 = kmax, k2 = 1− kmin/kmax, and where the saturation function is defined by

sat(y[n]) =


kmin if y[n]≥ kmin

y[n] if |y[n]| ≤ kmin

−kmin if y[n]≤−kmin.

We will define the constants kmin and kmax later. The relation between the input u[n] and
the signal noise-disturbed output y[n] is thus given by (see Fig. 5.7):

u[n] = r[n]− k(y[n])K0(z)y[n],

from which we clearly see that we have a nonlinear controller k(y[n])K0(z). The nonlinear
controller is defined by the values kmin = 0.02, kmax = 1.45, τz =

1
8 , and τc =

1
100 .

At this point, an obvious question is: What is the advantage of such a controller over a
classical PI(D) controller with a constant gain k? It is known that the gain k of a linear
controller is used to either reduce the noise effect on the input and output, or to shorten
output perturbation rejection. When the gain k = kmin is small, we speak of a low-gain con-
troller, whereas when k = kmax we speak of a high-gain controller. A low-gain controller
can attenuate the noise effect on the input and output at the cost of a longer perturbation
rejection time at the output. Conversely, a high-gain controller generates a quick perturba-
tion rejection, but bad noise attenuation. Clearly, the ability to use properties of both low-
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and high-gain controllers would be advantageous. For this reason, the nonlinear controller
k(y[n])K0(z) is designed as depicted in Fig. 5.7. Depending on y[n], the gain k(y[n]) is
chosen to reduce perturbation rejection time and increase noise attenuation at the same
time.

5.7.3 Least-Costly Experiment Design Problem

The LCED problem we consider is as follows. We minimise a weighted sum of input
and output power subject to a frequency-wise bound on the estimated transfer function
G(z, θ̂N). Mathematically, we solve the problem

min
Φr

1
2π

∫
π

−π

(
α|G0(e−iω ,θ0)|2 +β

)
|S0(e−iω)|2Φr(ω)dω

subject to

∀ω : |G(e−iω ,θ0)−G(e−iω , θ̂N)|< γ(ω)|G(e−iω ,θ0)| w.p. α, (5.24)

where we choose ∀ω : γ(ω) = 0.1. The optimisation problem above is used for the Sen-
sitivity Method, whereas the above objective function in the Stealth approach considers
S0 = 1. We thus require that at every frequency the relative error in the estimated transfer
function and the true system is less than or equal to 10% with probability α . Furthermore,
S(z,θ0) is the sensitivity function of the true system (G0(z),C(z)). We choose α = β = 1
in the objective function. In order to solve this problem, we furthermore uniformly grid
the frequency range [0,π) into J = 40 points, such that (5.24) can be written as a finite set
of frequency-wise constraints (see Section 3.2.3), and choose α = 0.99. The experiment
length is furthermore set to N = 3×104 and we recall that σ2

e = 7.5×10−4.

The resulting optimisation problem is of the form (3.1)-(3.2); the weighting function
L (e−iω ,θ0) in the objective function is given by (3.3), and the J = 40 frequency-wise
constraints are of the form (3.16). The excitation spectrum Φr(ω) in P−1

N,θ is parame-
terised by a 40th-order FIR filter, see (3.5). The optimisation problem is now finite and
can be solved, see Chapter 3.

In order to circumvent the chicken-and-egg issue, we replace θ0 - following the pre-
vious numerical study - by an initial estimate θinit = (0.0793, 0.0699,−1.6695, −1.0874,
0.1263,−1.9422,0.9442)T that is obtained by performing a short (N = 103) Direct Method
identification experiment (see Section 2.2.2) on the system shown in Fig. 5.7 (with Gid =
0) with a white-noise excitation signal. A Bode diagram of the data-generating system
G(z,θ0) and the initial model G(z,θinit) is shown in Fig. 5.8.

We can now solve the optimisation for the Stealth Method and the Sensitivity Method.
In the former case, we use Gid = G(z,θinit), whereas in the latter case we have Gid(z) = 0
and use θinit to obtain an estimate Sinit(z); see Section 5.3. The Box-Jenkins model struc-
ture Sinit(z) is of order three (which would be its order if there was no saturation in the
controller). The optimal spectra for the two cases are shown in Fig. 5.9a in respectively
red and blue. Observe that the spectra are quite similar. Furthermore, the costs of the
experiments of the Stealth and Sensitivity methods are the same.
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Figure 5.8: Bode diagram of the data-generating G(z,θ0) system (black) and initial model G(z,θinit ) (red) for numerical study 2.

5.7.4 Identification Results
For the identification of the true system S , the optimal excitation signals are translated
into the time domain, and applied as follows. For the Stealth Method, the corresponding
optimal excitation signal {ropt [n]}N

n=1 is applied to the system shown in Fig. 5.7 where
Gid(z) = G(z,θinit). For the Sensitivity Method, we apply the corresponding optimal ex-
citation signal to the system in Fig. 5.7 in which now Gid = 0.

Next, we collect in both cases the input and output data in a set ZN = {u[n],y[n]}N
n=1

and use (5.6) to obtain two estimates θ̂N . Figures 5.9b,c show respectively the Bode dia-
grams of the identified transfer functions H(z, θ̂N) and G(z, θ̂N) for the Stealth (red) and
Sensitivity (blue) methods. Observe that we obtain models that are very close to the true
frequency responses G0(e−iω) and H0(e−iω), both indicated with dashed black curves
(both lie under the blue and red curves).

We also ran fifty Monte Carlo simulations and calculated the distance between the true
model and the estimated model at each frequency, and took the worst case from the fifty
simulations. (These distances could also be calculated analytically.) The result is shown
in Fig. 5.9d, from which we see that in both cases the relative error between G(z, θ̂N) and
G0(z) is less than 10%, as required.

5.8 Numerical Study 3: A Dynamical Network

5.8.1 Introduction
The previous two numerical studies pertained to a single-input single-output system with
an MPC (piece-wise affine controller) and explicit nonlinear controller. In this last numer-
ical study, we will show how to use the Stealth and Sensitivity Method in order to apply
experiment design on linear dynamical networks; see the works of Van den Hof et al.
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Figure 5.9: The figures above all pertain to one Monte Carlo experiment. (a) Optimal excitation spectra corresponding to the
Stealth Method (red) and the Sensitivity Method (blue). (b) Bode diagram of the estimated transfer function H(z, θ̂N) for the
Stealth (red) and Sensitivity Method (blue). The true transfer function is shown in black, dashed. (c) Bode diagram of estimated
G(z, θ̂N) and true transfer function G0(z). Same colour coding as top figures. (d) Relative error between estimated G(z, θ̂N) and
true transfer function G0(z) for the Stealth (red) and Sensitivity (blue) methods. At all frequencies the relative error is less than
10%: the parameter accuracy constraints are thus satisfied.
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Figure 5.10: Schematic representation of the network. The controller C = G4(z) contains all feedback from the output y to the
input w1. The signal v2 is an external signal uncorrelated the noise signal e. The transfer function G4 is unknown but will not
be identified. Transfer function G2(z) is known. The transfer functions G1(z,θ0) and G3(z,θ0) are unknown, and for which the
parameters θ0 need to be estimated.

(2013); Dankers (2014) for an introduction to this topic.
Estimating a single transfer function (or even a subset of parameters in it) in a dynam-

ical network consisting of many transfer functions can be a daunting task, predominantly
due to the interconnected nature that is inherent to networks. To estimate a single transfer
function, the user is left with several choices, one of which is the selection of input(s) and
output(s) that are be used in the prediction error method (see Chapter 2). For simplicity,
we will consider in this section a single output that is measured, and furthermore fix the
input and output variables.

The network we consider is shown in Fig. 5.10. The input signal is w1 and the output
y; the other variables will be defined later. We are interested in identifying the parameters
of transfer function G1(z). We assume that G2(z) is known, but that G3(z) and G4(z) are
unknown (all these functions will be defined below). The latter transfer function should be
understood as the total transfer function that describes the dynamics between the output
y and the input w1; it is a superposition of serial- and parallel-coupled transfer function
between these two signals. It can be interpreted as a controller, which contains a huge
number of unknown parameters.

Our aim is to design an optimal excitation signal ropt so that we can identify the param-
eters in the transfer function G1(z) with a certain accuracy. In order to use LCED, we
recall from the introduction that we require an explicit and known expression of the con-
troller C(z), in this case G4(z). However, since G4(z) can be made up of a very complex
interconnection of systems, the transfer function G4(z) will be unknown. Fortunately, we
can use the Stealth and Sensitivity method introduced in this chapter to circumvent the
requirement of knowing C(z) = G4(z).

5.8.2 The Data-Generating System
The network is depicted in Fig. 5.10. All transfer functions are stable and rational, and are
defined as follows:

G1(z,θ)=
θ1

1+θ2z−1 , G2(z)=
1

1−0.25z−1 , G3(z,θ)=
θ3

1+θ4z−1 , G4(z)=
1

1−0.65z−1 ,

where it should be understood that θ = (θ1, . . . ,θ4)
T , that G2(z) is known, and where

G4(z) is unknown but does not need to be identified. The signal r is the excitation signal
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and v2 and e are two unknown and independent Gaussian white noise signals of respective
variances σ2

v2
and σ2

e . The true system is defined by θ0 = (0.1,−0.9,0.67,−0.21)T . The
transfer functions G1(z,θ0) is unknown and needs to be identified such that the variances
of the parameter estimates respect user-chosen constraints. However, as will be discussed
below, to obtain a consistent estimate of G1(z,θ0) the unknown transfer function G3(z,θ0)
also needs to be identified, although no restrictions are put on the variances of its parame-
ters. It is for this reason that θ0 contains both the parameters of G1(z) and G3(z).

5.8.3 The Sensitivity Method

In order to be able to identify G1 consistently, Dankers (2014) has shown that both G1
and G3 need to be identified. Dankers (2014) furthermore showed that, to this end, it is
sufficient to use the input data w1,w2 (see Fig. 5.10). The considered prediction error is

ε[n;θ] = y[n]−G1(q,θ)w1[n]−G3(q,θ)w2[n]. (5.25)

For experiment design, we will need an expression ofPN,θ. For this purpose, let us express
(5.25) as a function of the external and independent signals r, e, and v2. Denoting

S̃(q,θ) =
1

1+G4(q)(G1(q,θ)+G2(q)G3(q,θ))

as the transfer function between r and w1, we obtain

ε[n;θ] = ((G1(q,θ0)−G1(q,θ))+G2(q)(G3(q,θ0)−G3(q,θ))) S̃0(q)r[n]+εe[n]+εv2 [n],

where εe and εv2 are terms dependent on e and v2. We define for convenience S̃0(q) =
S̃(q,θ0).

Consequently, we see that the contribution of r to the inverse covariance matrix is given
by

P−1
r,N,θ =

N
2πσ2

e

∫
π

−π

Fr(e−iω ,θ0)F
H
r (e−iω ,θ0)Φr(ω)dω, (5.26)

where Fr(e−iω ,θ′) =
(
∇θG1(e−iω ,θ) |θ=θ′ +G2(e−iω)∇θG3(e−iω ,θ) |θ=θ′

)
S̃(e−iω ,θ0).

Thus, in order to be able to design Φr, we need to perform an initial experiment with an ini-
tial {rinit [n]}Ninit

n=1 leading to data {uinit [n],yinit [n]}Ninit
n=1 . With these data, we can identify the

models G1(q,θ0) and G3(q,θ0). Using the data {rinit [n],uinit [n]}Ninit
n=1 , we can also identify

a model of S̃(q,θ0) which allows to design Φr optimally using (5.26). The contribution
of v2 and e to the information matrix can be either neglected or estimated using similar
techniques as in Section 5.5.

5.8.4 The Stealth Method

The Stealth Method requires, just as the Sensitivity Method, an initial estimate of G1 and
G3 that can be deduced from an initial experiment. These models G1,init and G3,init can be
used to determine

Gid,tot(q) = G1,init(q)+G2(q)G3,init(q).
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Figure 5.11: Schematic representation of the network. The controller C = G4 contains all feedback from the output y to the input
w1. The signal v2 is an external signal uncorrelated the the noise signal e that is required in the identification procedure. In
the case the Stealth Method is used, the block Gid,tot is a non-zero rational, finite-order transfer function. The transfer function
G4 is unknown but will not be identified. Transfer function G2(z) is known. The transfer functions G1(z,θ0) and G3(z,θ0) are
unknown, and for which the parameters θ0 need to be estimated.

This transfer function Gid,tot is used to modify the network in such a way that r is not
sensed by the unknown ’controller’ G4. This is shown in Fig. 5.11. Assuming as in
Section 5.3.2 that G1,init = G1 and G3,init = G3, the prediction error is then given by (c.f.
(5.25))

ε[n;θ] = ((G1(q,θ0)−G1(q,θ))+G2(q)(G3(q,θ0)−G3(q,θ)))r[n]+ εe[n]+ εv2 [n]

and the contribution of r to the inverse covariance matrix, i.e., Pr,N,θ (c.f. (5.26)) becomes

P−1
r,N,θ =

N
2πσ2

e

∫
π

−π

F r(e−iω ,θ0)F
H
r (e
−iω ,θ0)Φr(ω)dω, (5.27)

where F r(e−iω ,θ′) =
(
∇θG1(e−iω ,θ) |θ=θ′ +G2(e−iω)∇θG3(e−iω ,θ) |θ=θ′

)
. This last

expression is thus no longer a function of S̃(q,θ0) or G4. Consequently, the optimal input
spectrum Φr can be determined (using G1,init and G3,init ).

5.8.5 Least-Costly Experiment Design Problem
We recall that our aim is to estimate the parameters θ1 and θ2 in transfer function G1(z,θ)
of the network in Fig. 5.11. Consequently, even though we will identify the parameters in
both G1 and G3, we only impose constraints on the variances of the parameters in G1:

σ
2
θ̂1
≤ (0.01θ1)

2

9
= 1.1×10−7, and σ

2
θ̂2
≤ (0.01θ2)

2

9
= 9.0×10−6, (5.28)

see Section 3.2.3. The LCED problem we solve is thus (5.13)-(5.14), in which J = 2,
the above constraints are of the form (3.14), and L (e−iω ,θ0) = 1; see also Example 3.2.
The inverse covariance matrix P−1

N,θ that is used to solve this problem is given by (5.26)
for the Sensitivity Method, and by (5.27) for the Stealth Method. In other words, we will
neglect the contribution R0 to the accuracy of the estimates. We parameterise the input
spectrum in both cases as Φr(ω) with a multi-sine (3.6) defined by Ts = 1, M = 105 and
ω f = 0.03 rad/s. The experiment length is N = 105, and the noise variances are σ2

e = 0.05
and σ2

v2
= 0.075.
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Figure 5.12: Bode diagram of the data-generating G(z,θ0) system defined in Section 5.8.2 (red) and the initial model G(z,θinit )
(red).

Regardless of Stealth or Sensitivity methods that we shall consider, one experiment
using a white-noise excitation signal of variance 36 and length Ninit = 105 samples is per-
formed. The data ZNinit = {w1[n],w2[n],y[n]}Ninit

n=1 is used with (5.25) to obtain the initial
estimate θinit = (0.1,−0.98,0.75,−0.25)T , which will replace θ0 in P−1

N,θ. A Bode dia-
gram of G(z,θinit) and G(z,θ0) is shown in Fig. 5.12. The same experiment data is used
to provide an estimate of the sensitivity function between w1[n] and r[n], and is denoted
by Sinit(z). The true sensitivity function S̃0(z) and the estimated Sinit(z) are shown in re-
spectively black and blue in Fig. 5.13a. The model order of Sinit is equal to the one of
the true sensitivity, and the delay is zero. Observe that a relatively good fit is obtained,
except for the phase at frequencies exceeding 0.1 rad/s (at higher frequencies, more power
is apparently required to obtain a better fit of the phase).

Neglecting the contributions of the noise signals e[n] and v2[n] to the parameter ac-
curacy, we construct the optimal input spectrum Φr,opt(ω) based on the following four
situations:

I. Sensitivity Method with θinit

This first LCED problem considers the approximation of the sensitivity function through
the Sensitivity Method detailed in Section 5.8.3. The optimisation problem is solved by
substituting the previously estimated sensitivity Sinit(q) in the inverse covariance matrix
(5.26), and by replacing furthermore θ0 with θinit in all of its other terms. The resulting
optimal amplitude of r for this problem is shown in Fig. 5.13b as a function of frequency
in dark blue. Observe that it contains two sinusoids, corresponding with the requirement
of obtaining a consistent estimate of four parameters (Ljung (1971)).
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II. Sensitivity with θ0

This second LCED problem is similar to LCED Experiment I. The difference, however, is
that instead of substituting the true parameter vector with the initial estimate θinit , we com-
pute the optimal input spectrum as if we had full knowledge of the true system. In other
words, we use S̃(q,θ0) in (5.26), of which all other terms are also evaluated at θ0. The
result is shown in Fig. 5.13b in cyan. We can now compare the optimal amplitudes found
from LCED problem I (that considered the realistic scenario of replacing the unknown
true parameter with an estimate) with the true optimal one (computed here). Notice that
also two sinusoids are present, although both are slightly shifted to a higher frequency.
This clearly shows that the optimal frequencies when using the estimate θinit in the LCED
problem are chosen too low.

III. Stealth Method with θinit

This LCED problem is concerned with the Stealth identification framework as displayed
in Fig. 5.11. We replace the true vector θ0 by the initial estimate θinit and define Gid(z) =
G(z,θ = θinit). This leads to an inverse covariance matrix expression in which the contri-
bution of Φr no longer contains a sensitivity function; see (5.27). The resulting optimal
amplitude as a function of frequency is shown in dark red in Fig. 5.13b. Not surprisingly,
two spectral lines are present in order to consistently estimate the four parameters in θ0.
Notice that these two peaks are close to the ones obtained with the LCED problem I.

IV. Stealth Method with θ0

This LCED problem is identical to III, with the exception that we use the true parameter
vector θ0 in the inverse covariance matrix (5.27) that is present in the LCED problem,
and consequently use Gid(z) = G0(z). The resulting optimal input spectrum is shown in
magenta in Fig. 5.13b. Similar to the comparison between LCED problems I and III, we
observe that the LCED problems II and IV have spectral lines that occur at similar frequen-
cies. It should be noted however that the highest frequency of the current experiment is
quite a bit lower than the one of LCED problem II, and is due to the fact that no controller
is present in the design of the optimal input signal using the Stealth Method, leading to a
different optimal frequency.

Comparing the LCED problems I and II with III and IV in Fig. 5.13b, we observe that
the power of the excitation signals of III and IV are less than those of I and II. This is due
to the fact that the Stealth implementation reduces the impact of the feedback G4(z) on the
loop. Indeed, From Fig. 5.13a we see that at the excitation frequencies the amplitude of the
excitation signal is reduced as the sensitivity is less than unity. Consequently, for the tra-
ditional loop in which the stealth block Gid(z) is not present (i.e. the Sensitivity Method),
the power of the excitation signal must be higher in order to increase the signal-to-noise
ratio. This in turn ensures that the variance constraints are satisfied.

Furthermore, we find that in all four experiments two sinusoids are required. We have
already explained that this is in agreement with the requirement of obtaining consistent es-
timates of four parameters. Nonetheless, this seems to contradict the heuristic arguments
in Chapter 4 and results from Javaherian (1974), which suggest that in order to estimate
κ parameters with an optimal input signal, it is almost always true that only κ/2 sinu-
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soids are required. However, the situation here is different. Indeed, in this network, we
want to accurately estimate the two parameters θ1 and θ2 residing in G1. Constraints have
therefore been put on the variances of the estimates θ̂1 and θ̂2. However, we also need
to identify the parameters in G3 to obtain consistent estimates of the parameters in G1.
We thus have κ = 4 unknown parameters, of which only J = 2 < κ parameters have con-
straints on their estimates. Consequently, the variance σ

θ̂i
= eT

i PN,θe of the estimate θ̂i is
a function of the 4×4 covariance matrix. To ensure that the variances of all the estimates,
and in particular of θ̂1 and θ̂2, are finite, the inverse covariance matrix P−1

N,θ must be full
rank. Indeed, the variance of each estimate is inversely proportional to the determinant
of the inverse covariance matrix, which is only non-zero if P−1

N,θ has full rank. Thus, the
optimal input spectrum requires two sines to ensure the full rank condition (Ljung (1971)).
The LCED optimisation problem for this network case thus finds the optimal amplitudes
and frequencies of the two required sinusoids. Had we only needed to estimate κ = 2 pa-
rameters, each with a variance constraint (J = 2), the optimal input signal would probably
contain only one sine.

5.8.6 Identification Results

In the previous section we have computed four optimal spectra. LCED problems I and II
correspond to a Sensitivity Method identification experiment, see Section 5.8.3, and the
problems III and IV correspond to a Stealth identification experiment, see Section 5.8.4.
We will now use these optimal spectra and perform identification experiments. We recall
that all experiments are done on the same network defined above.

For LCED problems I and II, we consider the identification scheme as displayed in
Fig. 5.10. The signal {ri,opt [n]}N

n=1, corresponding to the optimal input signal computed
with LCED problem i ∈ {I, II}, is applied to the true closed-loop system (defined in the
previous sections), and we collect the data ZN = {w1[n],w2[n],y[n]}N

n=1. This data is used
to obtain an estimate θ̂N using (5.25) and (5.6). Repeating this procedure using Monte
Carlo simulations (i.e. using varying noise realisations), we obtain a set of one hundred
estimates, i.e. {θ̂k,N}100

k=1. We take the first two components of each estimate in this set,
and compute their respective variances; see Table 5.2. Note that these variances obtained
with the signals rI,opt and rII,opt satisfy the required accuracy constraints (5.28). Note that
when using rII,opt - constructed on the basis of full knowledge of the system - leads to
lower variances of θ1 and θ2 than when using rI,opt .

For the LCED problems III and IV, we consider the Stealth identification scheme
as displayed in Fig. 5.11. The signal {ri,opt [n]}N

n=1, corresponding to the optimal in-
put signal computed with LCED problem i ∈ {III, IV}, is applied to the true closed-
loop system. In the case i = III, the Stealth block Gid(z) = G(z,θinit), and in the case
i = IV we use Gid(z) = G0(z). As for the previous two experiments, we collect the data
ZN = {w1[n],w2[n],y[n]}N

n=1 to obtain an estimate θ̂N using (5.25) and (5.6). The variances
of the estimates of θ1 and θ2 are also obtained from one-hundred Monte Carlo simulations,
and are shown in Table 5.2. We again find that the variance constraints (5.28) are respected,
and that the variances using the full knowledge of the system are lower than when using
the estimate θinit in the optimisation problems.

Comparing identification experiments I and II with III and IV, we see that the variances
using the Stealth Method are higher (but still satisfy the constraints). However, the optimal
spectra of rIII,opt and rIV,opt shown in Fig. 5.13b have a lower power, and thus lead to a



5.9 Summary 75

Identification Experiment Variance θ1 Variance θ2 Mean θ̂1 Mean θ̂2

I 3.335×10−8 7.386×10−8 0.1 -0.9
II 3.253×10−8 6.071×10−8 0.1 -0.9
III 4.602×10−8 2.097×10−7 0.1 -0.9
IV 4.587×10−8 2.462×10−7 0.1 -0.9

Table 5.2: Variances and means of the estimated parameters of transfer function G1(z,θ) obtained from identification experi-
ments using the optimal input spectra shown in Fig. 5.9b. Observe that the variances from the Stealth experiments III and IV are
higher than from experiments I and II. However, all experiments obey the variance constraints (5.28).
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Figure 5.13: (a) Bode diagram of the estimated sensitivity function (blue) and the true sensitivity function (black). Note that the
magnitudes match very well, but the phase is poorly matches after about 10−1 rad/s. (b) The optimal input spectra for r[n] in the
case of an estimated sensitivity (dark blue), the true sensitivity based on θ0 (cyan), the stealth method based on prior estimate
(dark red), and the stealth method using θ0 (magenta). Note that both results from the stealth method deliver less powerful input
signals.

lower experiment cost (5.13). The Stealth Method thus slightly outperforms the Sensitivity
Method in this case.

Notice furthermore that all the variances are lower than required. This is due to the fact
that we have neglected the contribution of the noise e and v2 in our design of the optimal
spectra. Consequently, the optimal spectra are more powerful than required in order to
satisfy the variance constraints.

5.9 Summary
In this chapter we have generalised the Least-Costly Experiment Design framework, such
that it can now also be applied to linear systems with a (possible unknown) nonlinear or
unknown linear controller. To this end, we have introduced the Stealth Method, which
adapts the classical closed-loop scheme such that the controller no longer senses the ex-
citation signal. We also introduced the Sensitivity Method that estimates the (nonlinear)
sensitivity function of a closed-loop system. This sensitivity function estimate can then
be used in the Least-Costly Experiment Design framework to replace the unknown, true
sensitivity function. Three numerical studies have shown the strength of these two meth-
ods. In all studies, optimal input spectra are computed that lead to estimates that satisfy
user-chosen accuracy constraints, even when the true parameter vector is not used in the
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LCED problem.
There are still many open research questions to address. For instance, how can we

position the Stealth block in a network as smartly as possible in order to estimate a partic-
ular transfer function in it? If the network contains multiple transfer functions that require
identification, how should we place one or more Stealth blocks in it?



6

LCED for Structured Systems Governed
by Linear PDEs

”Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.” - Marie Curie

6.1 Introduction
It is mentioned in Section 3.2.3 that accuracy estimation of key physical parameters in a
system is an important problem. We give some examples: a material can be characterised
by its conductivity and diffusivity constants in heat transfer studies (Gabano and Poinot
(2009)), realistic groundwater contamination simulations require accurate estimates of dif-
fusivity and advection constants (Yeh (1986); Wagner (1997)), permeability and porosity
of rock aid in oil extraction from subsurface reservoirs (Mansoori et al. (2014)), etc. In this
context, we consider in this chapter the problem of optimally designing the identification
experiment leading to the estimates of these physical parameters. More particularly, we de-
sign the least-intrusive excitation signal that nevertheless leads to parameter estimates with
variances that do not exceed certain given (user-chosen) limits. Physical systems can have
different structures. In this chapter, we are particularly interested in those systems that
can be described by linear partial differential equations (PDEs) with spatially-independent
coefficients.1

Such systems are characterised by equations that not only contain time derivatives but
also spatial ones. In the System Identification literature they are usually referred to as
distributed systems. The phenomena described by such equations are quite pervasive in
the physical world (convection, diffusion, diffusion-advection-reaction, wave phenomena).
Consequently, it is of importance to be able to design experiments that will allow identi-
fication of physical parameters in those systems in an accurate manner. Unfortunately,
as their dynamics are described by PDEs, the classical optimal experiment design2 tech-
niques that have been developed for systems described by ordinary differential equations
(ODEs) cannot be directly applied, see e.g. (Jansson and Hjalmarsson (2005); Bombois

1Parts of this chapter have been published in (Potters et al. (2016a)).
2For a general introduction to optimal experiment design, we refer the reader to the nice historical review by

Mehra (1974b).
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et al. (2006)). The classical approach in Chapter 3 will therefore have to be adapted. This
is one of the contributions of the present chapter. Moreover, the particular structure of the
systems described by PDEs allows us to analyze an additional design aspect that is usually
not considered in optimal (least-costly) experiment design: the location of the actuator
that will excite the system and the location of the sensor that will measure the output of
the system for the purpose of identification. Indeed, as mentioned in the recent book of
Uciński (2004), most literature on optimal sensor and actuator location in distributed sys-
tems deals with state estimation, but few works actually address parameter identification.
Yet, finding such locations can greatly improve the accuracy of the estimates, as shown
by Rensfelt et al. (2008) on an elasticity estimation problem. This chapter addresses the
problem of finding the optimal sensor and actuator locations as well as finding the optimal
spectrum of the input signal.

Before addressing optimal experiment design for systems decribed by PDEs, let us first
discuss how we will perform the identification of the physical parameter vector θ0 of
such a system. Like all physical systems, systems described by PDEs are continuous-time
systems. Since we assume linearity, the relation between the continuous-time input and
output is given by a continuous-time transfer function G(s,θ0) in the Laplace variable s (θ0
appears explicitly in G(s,θ0)). However, for systems described by PDEs, this continuous-
time transfer function is not rational in s (it can be e.g. G(s) = cosh(

√
s)). A closed-form

expression of G(s,θ0) can be derived if the PDE is analytically tractable, although this is
in general not possible for complicated (high-order, coupled) systems. Because the data
that will be used for the identification are discrete, we need a discrete-time representa-
tion of G(s,θ0) that is also explicit in θ0. However, such a representation does not exist
in practice (it would be of infinite order). To circumvent this problem, spatio-temporal
discretisation is generally applied and yields a finite-order approximation G(z,θ0) of the
discrete-time transfer function between the discrete-time input and output data. The ap-
proximation consists of dividing the spatial dimension into a finite number of intervals in
which the states of the systems are supposed constant. The order of G(z,θ0) is then related
to the number of intervals in the grid. This spatio-temporal discretisation yields a transfer
function that is still explicit in θ0. Different discretisation schemes exist. In this chapter,
we propose to use the Crank-Nicolson stencil (Crank and Nicolson (1947)), which is un-
conditionally stable, and also ensures that the finite-order approximation G(z,θ0) is stable.
Once we have the description of the system in the form of the transfer function G(z,θ0),
it is straightforward to use the input-output data to identify the parameter vector θ0 using
prediction-error techniques.

A second method to simulate/identify the system explicit in θ exists. When the PDE
is analytically tractable, we can make use of the linearity of the system to calculate the
system response (Ljung (1999)). However, this method is only applicable for an input
signal that is a superposition of sines.

These two approaches are not the only ones possible to identify the physical parameter
vector θ0. A rational or fractional black-box model can also be first identified and then
the physical parameters be deduced from the parameters of the black-box model (see for
instance (Poinot et al. (2002); Poinot and Trigeassou (2003); Gabano and Poinot (2011);
Aoun et al. (2004))). However, these approaches require models with many parameters
that are implicitly coupled to the physical ones. As such, the identification procedure will
be numerically heavy. If the continuous-time transfer function G(s,θ0) can be expressed
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in closed form, frequency-domain approaches can also be used to identify θ0 from the col-
lected data (see for instance (Pintelon et al. (2005))). Recently, a nice instrumental variable
method has also been proposed by Schorsch et al. (2013). However, we have chosen the
approach via G(z,θ0) (or G(s,θ0)), since it is the most general, the most straightforward,
and useful for Optimal Experiment Design.

We have now defined our identification method and we have an expression of the true
plant transfer function as a function of the physical parameters (which in general is also a
function of the sensor and actuator locations, or other design variables). When a discrete-
time plant transfer function G(z,θ0) is considered, we can then use the classical optimal
experiment design technique introduced in Chapter 3 to optimally design the input sig-
nal for the identification of the physical parameter vector θ0. The to-be-designed optimal
signal therefore needs to be parametrised. Generally, it is parametrised as a superposition
of sinusoids (e.g. a multi-sine) or a filtered white noise. These parametrisations make
the optimal experiment design problem convex and finite-dimensional. The transfer func-
tion G(z,θ0) being generally of large order, it is more practical to parametrise the to-be-
designed optimal input signal as a multi-sine (with fixed frequencies, but free amplitudes).
Indeed, in this particular case, only the frequency response of the gradient of G(z,θ0)
with respect to θ0 is required for optimal experiment design3. In the case where a closed-
form expression of G(s,θ0) exists, the frequency response of the gradient of this usually
simpler continuous-time transfer function can be used instead in the optimal experiment
design procedure.

The approach above can be applied for each sensor/actuator location in a very easy
way and the optimal experiments (in the sense of experiment cost) for each location can
be compared, from which the optimal locations can be determined.

We apply our methodology to one-dimensional, second-order linear PDEs with spatially-
independent coefficients. Diffusion-advection-reaction processes in real life can be mod-
elled with this family of equations. We stress that our methodology is applicable to higher-
dimensional, higher-order PDE systems with different boundary conditions (as long as a
discrete-time transfer function between input and output can be determined). We intro-
duce and scale the continuous-time physical models in Section 6.2 and 6.2.2. The unscaled
physical model represents the (continuous-time) true system which will be used to identify
the physical parameters θ0 with the use of our optimal input signal. The scaled model will
be used for optimal input signal design and in the identification procedure. This proce-
dure, together with the generation of discrete-time input and output signals, is explained
in Section 6.3. The identification procedure requires simulation of the output as a function
of θ and is introduced in Section 6.3.2. The experiment design framework is explained in
Section 6.4 and shows how to generate the optimal input signal for given choice of sen-
sor and actuator locations. We generalise the least-costly experiment design framework in
Section 6.4.3, where now also optimal sensor and actuator locations are computed. In Sec-
tion 6.5, we apply our methodology to a diffusion process in which two material properties
are identified with a front-face experiment.

3The gradient is indeed used to compute the covariance matrix of the identified parameter vector.
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6.2 Diffusion-Advection-Reaction Processes

6.2.1 The Governing Equations
The diffusion-advection-reaction equation typically contains only a few key physical pa-
rameters, the most important one being the so-called diffusivity parameter, i.e., the hy-
draulic diffusivity parameter in flow through porous media, the conductivity coefficient
in conductive heat transfer, the diffusion parameter in mass transfer, etc. Although this
lumped parameter is a function of microscopic properties of the system, it effectively
characterises the observed macroscopic dynamic behaviour of the system. Hence, us-
ing macroscopic measurements of the system, it is possible to estimate such parameters.
We shall use the family of diffusion-advection-reaction processes as a showcase of our
methodology, but we remind the reader that it is applicable to higher-order linear PDE
processes. Furthermore, we make a particular choice of boundary conditions, but many
others exist that can also be applied within our framework. However, it is important to
note that we restrict attention to systems with physical parameters that are not spatially
dependent.

Diffusion-advection-reaction processes are described by the following family of second-
order linear partial differential equations:

∂ f (x, t)
∂ t

= θ1
∂ 2 f (x, t)

∂x2 +θ2
∂ f (x, t)

∂x
+θ3 f (x, t), (6.1)

where f (x, t) represents a macroscopic physical quantity at continuous time t and continu-
ous position x. The coefficients θ1 > 0, θ2, θ3 are physical parameters. The spatial domain
is defined by D = [0,L], where L the domain length. We assume zero initial conditions at
t = 0. The boundary conditions are:

−θ4
∂ f (x, t)

∂x

∣∣∣∣
x=xu

= u(t), yn f (t) = f (xy, t) and f (L, t) = 0∀t. (6.2)

The physical parameters are collected in the vector θ = (θ1,θ2,θ3,θ4)
T . The first bound-

ary condition in (6.2) is of the 2nd kind, known as the Neumann boundary condition. It
expresses the flow rate across the boundary at position x = xu induced by the influx u(t).
We define u(t) as the user-imposed (known) input signal to the physical system and there-
fore call xu ∈D the input location. The second boundary condition defines the noise-free
output yn f (t) being equal to the physical quantity f (x, t) at the output measurement loca-
tion x= xy ∈D. We thus consider a single-input, single-output system. The third boundary
condition states that the physical quantity f (x, t) at location x = L is equal to zero at all
times.

Definition 6.1 The data-generating system is defined by equations (6.1)-(6.2) and setting
θ = θ0, where θ0 are the true physical parameter values.

If the system of equations (6.1)-(6.2) is analytically tractable, then a Laplace transform of
(6.1)-(6.2) allows us to relate the input u(t) and output yn f (t) of the data-generating system
through

Yn f (s) = Gxu,xy(s,θ0)U(s), (6.3)

where s is the Laplace variable, Yn f (s) = L
{

f (xy, t)
}

the Laplace transform of yn f (t),
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U(s) =L {u(t)} the Laplace transform of u(t), and Gxu,xy(s,θ0) is defined as their transfer
function4. The subscripts xu,xy indicate that the transfer function depends on the input
and output locations. Hence, the above relation shows that the physical system may be
interpreted as a linear, time-invariant system defined through input U(s), output Yn f (s),
and transfer function Gxu,xy(s,θ0). As mentioned in the Section 6.1, this transfer function
will be irrational and of infinite order in s.

6.2.2 Non-dimensionalisation
An inherent feature of physical systems is the order-of-magnitude difference between the
input and output values, and between the physical parameters values. Numerical simula-
tion of the unscaled system (6.1)-(6.2) is prone to numerical difficulties, especially when
considering the optimal experiment design algorithm, which uses a covariance matrix ex-
pression of the parameters. Without scaling, this matrix is usually ill-conditioned and
consequently the algorithm cannot find a solution to the optimisation problem.

To avoid these difficulties we non-dimensionalise equations (6.1)-(6.2) as follows:

1. Scale parameter vector θ: θ̃ = Θ−1
s θ, where Θs = diag(θs,1, . . . ,θs,4) is a diagonal

matrix containing the scaling factors for each element θi in the vector θ,

2. Non-dimensionalise all variables:

f̃ =
f
fs
, ũ =

u
us
, x̃ =

x
xs
, t̃ =

t
ts
, (6.4)

where fs, us, xs, and ts are as-of-yet undecided scaling values,

3. Rewrite (6.1)-(6.2) in terms of the non-dimensional parameters and variables defined
in step 1 and 2:

∂ f̃ (x̃, t̃)
∂ t̃

= θ̃1
θs,1ts

x2
s

∂ 2 f̃ (x̃, t̃)
∂ x̃2 + θ̃2

θs,2ts
xs

∂ f̃ (x̃, t̃)
∂ x̃

+ θ̃3θs,3ts f̃ (x̃, t̃), (6.5)

with boundary conditions

− θ̃4
θs,4 fs

usxs

∂ f̃ (x̃, t̃)
∂ x̃

|x̃=x̃u= ũ(t̃), ỹn f (t̃) = f̃ (x̃y, t̃), and f̃ (
L
xs
, t̃) = 0∀t̃, (6.6)

4. Select fs, us, xs, and ts such that as many as possible terms in (6.5)-(6.6) are solely
a function of θ̃, and therefore of O(1). The selection is not unique. One possible
choice is to freely choose fs and determine xs, ts, and us as the solution of the
following three equations: ts = x2

s/θs,1, xs = θs,2ts, and us = θs,4 fs/xs. This leads
to xs = θs,1/θs,2, ts = θs,1/θ 2

s,2 and us = θs,4θs,2 fs/θs,1. If some θ̃i are zero, more
freedom is available.

Step 1 ensures that the dimensionless parameters are of O(1); a necessary step in order to
apply experiment design. Although we don’t know the actual values of θ0, we do know
their order of magnitude. Consequently, each element in the scaled vector θ can be made

4For some simple diffusion processes an analytical solution exists, and therefore also an analytical expression
of Gxu ,xy .
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of order one. Step 4 simplifies the non-dimensional system and shows which processes
(i.e. diffusion, advection, or reaction) are dominant5. Substitution of θ = θ0 in step 1 and
following the scaling procedure then defines the scaled equivalent of the data-generating
system as detailed in Definition 6.1.

The relation between the scaled output ỹn f (t̃) and scaled input ũ(t̃) for the family of
scaled physical systems reads

Ỹn f (s̃) = G̃x̃u,x̃y(s̃, θ̃)Ũ(s̃), (6.7)

where now Ỹn f (s̃) = L
{

f̃ (x̃y, t̃)
}

, Ũ(s̃) = L {ũ(t̃)} and s̃ = sts. This equation is the
scaled equivalent of equation (6.3) for θ̃ = θ̃0 ≡Θ−1

s θ0.

6.3 Identification and Simulation

6.3.1 Introduction
In the previous sections we have defined the continuous-time data-generating system, see
Definition 6.1. This system represents the true physical process of which we want to
identify the physical parameters θ0. To accomplish this, we will here consider open-loop
identification, i.e., the excitation signal will be applied directly to the input of the system:
r = u. We will suppose in the sequel that this applied excitation is a continuous-time
signal, e.g. a continuous-time multi-sine6. This continuous-time input signal yields a
continuous-time noise-free output signal yn f (t).

Since the prediction error identification method requires discrete-time data, we will
choose a certain sampling time Ts. If the input signal u(t) contains frequencies higher
than the corresponding Nyquist frequency π/Ts, the input and output data are first filtered
by an anti-aliasing filter. The sampling time Ts is generally chosen such that the Nyquist
frequency is a decade above all dynamics of the system (i.e. the system’s bandwidth).

With a sampling time Ts chosen, we can deduce the discrete-time input signal uD[n] =
u(t = nTs), n = 1, . . . ,N, with NTs the experiment length expressed in seconds. The
discrete-time output yD[n] is obtained by measuring the continuous-time output yn f (t) at
time instants t = Ts, t = 2Ts,. . ., t = NTs. This measurement process is assumed to be
corrupted by a zero-mean white noise with variance σ2

e . In other words

yD[n]≡ yn f (t = nTs)+ e[n], (6.8)

where e[n] represents the zero-mean white noise with variance σ2
e . Following this proce-

dure we obtain the data set ZN = {uD[n],yD[n]}N
n=1.

6.3.2 Identification Procedure
We identify the physical parameter vectors θ0 using the collected data. First, we scale
the dataset ZN using (6.4) to Z̃N =

{
uD[ j]

us
, yD[ j]

fs

}
, where now our data points are shifted

5The scaling procedure explained here is classical, except that usually in the literature the parameters are
(assumed to be) known. In such cases, one can make most terms equal to unity in step 4, rather than of O(1).

6If the chosen excitation is generated by a computer as for e.g. a white noise signal, the discrete-time signal
is then first transformed in a continuous-time signal using a DAC as in Fig. 2.1.
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Figure 6.1: (a) Unscaled continuous-time output signal as a function of time (black) and the noise-corrupted measured discrete-
time signal (red). (b) Scaled continuous-time output (black), scaled noise-corrupted measured discrete-time signal (red), and
scaled simulated output data (blue).

in time to t̃ = jTs/ts. The scaled continuous-time noise-free output ỹn f (t̃) is depicted in
Fig. 6.1b in black, whereas the scaled measured data points yD[ j]/ fs are shown in red.
Observe that due to the time scaling the temporal distance between the data points has
become T̃s = Ts/ts. The scaled true physical parameter θ̃0 = Θ−1

s θ0 can now be estimated
with the least-squares criterion (see Chapter 2)7:

ˆ̃θN = argmin
θ̃

1
N

N

∑
j=1

(
yD[ j]

fs
− ỹsim[ j; θ̃]

)2

, (6.9)

where ỹsim[ j; θ̃] is the sampled version of the output ỹn f (t̃) of the scaled system (6.5)-(6.6)
for an arbitrary θ̃ and yD[ j]/ fs is the scaled measured output from the data-generating sys-
tem. The unscaled estimate can then easily be retrieved by calculating θ̂N = Θs

ˆ̃θN (step 1
in Section 6.2.2). It is apparent from (6.9) that we require an expression for ỹsim[ j; θ̃] for
estimation.

To simulate the noise-free scaled output ỹn f (t̃) (c.f. (6.6)) for arbitrary values of the phys-
ical parameters θ̃ we can use two methods.

Method 1

If the input signal is chosen to be a superposition of sinusoids, its scaled form being

ũ(t̃) =
M

∑
m=1

Ãm sin(ωmtst̃) =
M

∑
m=1

Ãm sin(ω̃mt̃),

7If the noise corrupting (6.8) is not white, the corresponding noise model H(z) could be used in (6.9) in the
same way as in (2.4)-(2.5).
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where ω̃m =ωmts and Ãm =Am/us, then the continuous-time simulated output reads (Ljung
(1999))

ỹsim(θ̃, t̃) =
M

∑
m=1

Ãm|G̃x̃u,x̃y(iω̃m, θ̃)|sin(ω̃mt̃ +αm),

where αm =∠G̃x̃u,x̃y(iω̃m, θ̃), the transfer function G̃x̃u,x̃y defined in (6.7), and M a positive
integer. Sampling this signal with the scaled sampling time Ts/ts generates ỹsim[ j; θ̃] that
is used in (6.9)8.

Method 2

Discretise equation (6.5)-(6.6) using a finite-difference method which is detailed in Sec-
tion 6.3.2. This method discretises time and space at an interval of ∆t̃ and ∆x̃, respectively.
The constant ∆t̃ is called the time integration step. Let us choose ∆t̃ = T̃s = Ts/ts. Then
we can apply an arbitrary input signal u(t) to the data-generating system. The sampled
scaled input ũD from Z̃N can then be used to simulate the output ỹsim[ j; θ̃] of which the
samples are separated at an interval of Ts/ts. The simulated points are shown in blue for
θ̃ = Θ−1

s θ0 and as can be observed, they occur at the same time instance as the scaled
measured output data from Z̃N .

Method 1 can only be used for sinusoidal input signals, and if a closed-form expression
of G̃x̃u,x̃y exists. Method 2 is the most generic one as it can be used when the G̃x̃u,x̃y does
not have a closed-form expression and/or the input signal is not a sum of sinusoids. Since
Method 2 is more involved, we give more details concerning this method. First, we show
in the next section how to generate ỹsim[ j; θ̃] for Method 2.

Simulation of the Data-generating System using a Finite-Difference Scheme

In this section we show how we generate the simulated output ỹsim[ j; θ̃] that is used in
(6.9) using Method 2 above. To this end, we discretise the scaled PDE equations (6.5)-
(6.6), which will serve two purposes. On the one hand, it provides us a way to generate
ỹsim. On the other hand, the discretisation delivers a state-space model explicit in the phys-
ical parameters, which in turn can be converted into a discrete-time transfer function that
is required for optimal experiment design.

Partial differential equations like (6.5)-(6.6) are sometimes refered to as stiff equations.
Applying the wrong integration scheme can result in exponential growth of numerical er-
rors. Most explicit methods, such as the forward Euler method, will only provide a stable
solution under restrictive conditions on the spatial and temporal integration steps. To avoid
such issues, we have adopted the implicit Crank-Nicolson algorithm, which is known to be
unconditionally stable regardless of the temporal and spatial integration steps. A second
benefit of this method is that the temporal truncation error is of (∆t)2 instead of ∆t for the
Euler methods.

We recall that we will simulate a scaled version of the data-generating system in Def.
6.1. The conversion between the continuous-time physical models (6.1)-(6.2) and (6.5)-
(6.6) is defined through (6.4). Using these definitions, the scaled spatial domain becomes

8In Method 1, the discrete-time input uD[n] are not explicitly used in the identification criterion.
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D̃ = [0, L
xs
], which we discretise in V parts of size ∆x̃9. This results in a spatial resolution

of ∆x̃ = L
xsV

. The time integration step is chosen equal to ∆t̃ = Ts
ts

10. The scaled time is
then represented by t̃ = j∆t̃, where j ∈ N+. We use index i ∈ N+ to denote the position
on the lattice, i.e., xi = i∆x̃. At location i∆x̃ and at time j∆t̃, the input and macroscopic
field are ũ j

i = ũ(i∆x̃, j∆t̃) and f̃ j
i = f̃ (i∆x̃, j∆t̃), respectively. Using these definitions, the

scaling steps in Section 6.2.2, discretisation of (6.5) and (6.6) results in

f̃ j+1
i − f̃ j

i
∆t̃

=
1
2 ∑

l={0,1}

(
θ̃1

f̃ j+l
i+1 −2 f̃ j+l

i + f̃ j+l
i−1

(∆x̃)2 + θ̃2
f̃ j+l
i+1 − f̃ j+l

i−1

∆x̃
+ θ̃3θs,3ts f̃ j+l

i

)
, (6.10)

ũ j
iu =−θ̃4

f̃ j
iu+1− f̃ j

iu
∆x̃

, ỹ j
n f = f̃ j

iy and f̃ j
L/xs

= 0∀ j, (6.11)

where on the r.h.s. of the first equation we took the average of a forward- and backward-
Euler method to ensure stability of the simulation for any ∆t̃ and ∆x̃ (it will also ensure
stability of the transfer function G that we will derive shortly). Lastly, ts is defined in step 4
in Section 6.2.2. This discretisation method is known as the Crank-Nicolson method. We
remark that the actuator and sensor positions x̃u and x̃y in (6.6) determine the resolution ∆x̃
to ensure that iu = x̃u/∆x̃, iy = x̃y/∆x̃ in (6.11) are integers.

We rewrite the first of the above equations as

f̃ j+1
i − f̃ j

i = λ̃1

(
f̃ j+1
i+1 −2 f̃ j+1

i + f̃ j+1
i−1 + f̃ j

i+1−2 f̃ j
i + f̃ j

i−1

)
+λ̃2

(
f̃ j+1
i+1 − f̃ j+1

i−1 + f̃ j
i+1− f̃ j

i−1

)
+ λ̃3

(
f̃ j+1
i + f̃ j

i

)
(6.12)

where the λ̃ ’s are defined as

λ̃1(θ̃) = θ̃1
∆t̃

2(∆x̃)2 , λ̃2(θ̃) = θ̃2
∆t̃

2∆x̃
, λ̃3(θ̃) = θ̃3θs,3ts

∆t̃
2
, (6.13)

and where we recall that ts is defined in step 4 in Section 6.2.2. With these expressions,
we will now show how to approximate ỹn f (t̃) at discrete-time instances t̃ = jTs/ts using
the input we applied to the data-generating system ũ j

iu . To this end, let us denote the vector

f̃ [ j+1] =
(

f̃ j+1
0 , . . . , f̃ j+1

V

)
, which contains the value of the macroscopic field at locations

i = 0, . . . ,V at time j+1. Similarly, we define f̃ [ j] =
(

f̃ j
0 , . . . , f̃ j

V

)
for time j. Lastly, we

let ũ[ j+1] = ũ j+1
iu and ũ[ j] = ũ j

iu . Imposing the boundary conditions (6.11) and grouping
all terms of j+ 1 in (6.12) on the l.h.s. and all terms at time j at the r.h.s. results in the
descriptor state-space form

Ẽ(θ̃)f̃ [ j+1] = Ã(θ̃)f̃ [ j]+ B̃(θ̃)(ũ[ j+1]+ ũ[ j]) , (6.14)
ỹsim[ j; θ̃] = C̃f̃ [ j], (6.15)

9The number V is usually chosen through simulations of the discretized system. A trade-off can be made
between computational time and accuracy of the numerical solution.

10The simulation accuracy is thus O(∆t̃)2. If ∆t̃ turns out to be large, define the integer γ such that the time
integration step becomes ∆t̃/γ . This generates γ times more points in the considered simulation time interval. In
the identification procedure, one then has to downsample the simulated output by a factor γ .
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in which

Ẽ(θ̃) =



w0,0 w1 0 · · · · · · 0
w−1 w0,1 w1 0 · · · 0

0
. . . . . . . . . . . .

...
... 0

. . . . . . . . . 0
...

...
. . . w−1 w0,V−1 w1

0 0 · · · 0 w−1 wV


, (6.16)

Ã(θ̃) =



w2,0 −w1 0 · · · · · · 0
−w−1 w2,1 −w1 0 · · · 0

0
. . . . . . . . . . . .

...
... 0

. . . . . . . . . 0
...

...
. . . −w−1 w2,V−1 −w1

0 0 · · · 0 −w−1 w2,V


, (6.17)

B̃(θ̃) =
2∆x̃
θ̃4

(λ̃2− λ̃1)
(

w3,0,w3,1, · · · ,w3,V
)T

, and C̃ = (δi,iy ,δi,iy , . . . ,δi,iy). (6.18)

Matrices Ẽ and Ã are two (V +1)× (V +1) matrices, B̃ a (V +1) column vector, and C̃
a (V +1) row vector. Furthermore,

w0,i = 1+(2−δi,iu)λ̃1(θ̃)− λ̃3(θ̃),w1 =−λ̃1(θ̃)− λ̃2(θ̃), w−1 =−λ̃1(θ̃)+ λ̃2(θ̃),

w2,i = 1− (2−δi,iu)λ̃1(θ̃)+ λ̃3(θ̃), w3,i = δi,iu . (6.19)

In the expressions of w0,i, w2,i, and w3,i the symbol δi,iu is the Kronecker delta function,
defined by δkl = 1 if k = l and δkl = 0 for k 6= l. It means that the values of w0,i, w2,i, and
w3,i differ at the row index i = iu, which is a consequence of the boundary conditions. We
remark that the matrices Ẽ and Ã are tri-diagonal since we are dealing with a second-order
PDE (c.f. (6.1)). Consequently, we can compute the vector f̃ [ j] with O(V ) complexity
with Thomas’ algorithm (Thomas (1949)) (a simplified version of Gaussian elimination
that can solve tri-diagonal systems of equations).

We now return to the problem of identification in Section 6.3. To simulate the scaled
continuous-time output ỹn f (t) defined in equation (6.6), we first compute the vector f̃ [ j]
using (6.14)-(6.19) and the scaled input data points from Z̃N defined in Section 6.3, i.e. we
compute the macroscopic field f (x, t) at the discrete spatial locations i∆x̃ for i = 0, . . . ,V ,
and times j∆t̃ = jTs/ts for j = 1, . . . ,N. Equation (6.15) then takes the element of this vec-
tor corresponding to location x̃y. Indeed, ỹsim[ j] is then equivalent to ỹsim[ j] = f̃ (x̃ = x̃y, t̃ =
jTs/ts). We can now identify the physical parameters using equation (6.9), the scaled out-
puts from Z̃N , and our simulated output ỹsim[ j]. This way of simulating generates the entire
macroscopic field f̃ (x, t) at discrete positions i∆x̃. The computational time scales linearly
with ∆t̃ due to the tri-diagonal algorithm, which allows for very high temporal resolution
in the least-squares identification method.
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Lastly, we show how the descriptor state-space form can be converted into a discrete-
time transfer function. First, we rewrite (6.14)-(6.15) in its state-space form

f̃ [ j+1] = Ã(θ̃)f̃ [ j]+ B̃(θ̃)ũD[ j]

ỹsim[ j; θ̃] = C̃f̃ [ j], (6.20)

where Ã(θ̃) = Ẽ−1Ã, B̃(θ̃) = Ẽ−1B̃(1+ z̃), and C̃ = C̃. Here, z̃ = eiω̃T̃s . From this state-
space form we can trivially compute the discrete-time transfer function (the discrete-time
equivalent of (6.7)), being

G̃iu,iy(z̃, θ̃) = C̃
[
z̃I− Ã(θ̃)

]−1
B̃(θ̃). (6.21)

In this equation, I is the (V +1)×(V +1) identity matrix, z̃= eiω̃T̃s , and ω̃ =ωts the scaled
frequency. Note that this transfer function is not causal. However, since we only need its
frequency response later, and u(t) is fully known, this is not an issue. The discrete-time
scaled input and output signals are then related by

ỹsim[ j; θ̃] = G̃iu,iy(z̃, θ̃)ũD[ j].

We recapitulate what we have done so far. We have defined the data-generating system to
which we apply an analog input signal, usually a superposition of sinusoids, and measure
the noise-corrupted output at an interval of Ts seconds. We have shown how to identify the
physical parameters by scaling the dataset ZN and simulating the scaled continuous-time
model of the data-generating system as defined in Definition 6.1. What we have not yet
defined is how to design the input signal that minimises the cost of the experiment while
guaranteeing user-imposed constraints on the variances of the physical parameters. This
question will be addressed in the next section.

6.4 Least-Costly Optimal Experiment Design

6.4.1 Introduction
We recall that we wish to estimate the κ-dimensional true parameter vector θ0 of the
data-generating system (see def. 6.1) in such a way that the cost of the experiment is
minimal, while at the same time guaranteeing with high probability that the variances of
the elements of our scaled estimate ˆ̃θN remain below certain user-defined constraints. The
cost and the constraints need to be a function of the to-be-designed input signal in order
to find the optimal one. We first assume that the sensor and actuator locations iy and iu
are fixed. In all that follows we consider the scaled system, but conversion to the unscaled
system is done with (6.4). We restrict our attention to a multi-sine input signal.

6.4.2 Fixed Sensor and Actuator Locations
We start by defining the constraints. The joint confidence region containing an estimate
ˆ̃θN with a user-defined probability α is described by the ellipsoid (c.f. (2.6))

E =
{
θ̃ | (θ̃− θ̃0)

T P−1
N,θ̃

[Φ̃ũ](θ̃− θ̃0)≤ χ
2
α(κ)

}
,
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in which χ2
α(κ) is the quantile of the Chi-squared distribution function for a probability α ,

and κ = dim(θ̃). Furthermore, the inverse covariance matrix P−1
N,θ̃

when using the scaled

input signal ũD[n] with spectrum Φ̃ũ in the frequency-domain reads (see Chapter 2)

P̃−1
N,θ̃

=
NT̃s

2πσ̃2
e

∫
π/T̃s

−π/T̃s

[
∇θ̃G̃iu,iy(e

−iω̃T̃s , θ̃)
]
θ̃=θ̃0

[
∇θ̃G̃iu,iy(e

−iω̃T̃s , θ̃)
]H

θ̃=θ̃0
Φ̃ũ(ω̃)dω̃,

(6.22)
where σ̃2

e = σ2
e / f 2

s is the scaled noise variance, G̃iu,iy(e
−iω̃T̃s , θ̃) the discrete-time transfer

function defined in (6.21), T̃s the scaled sampling time, and Φ̃ũ(ω̃) the spectrum of input
signal.

We now wish to put bounds on the variances of the estimates. To this end, we con-
sider the LMI in Section 3.2.3 and adapt it to the scaled estimate. The resulting variance
constraints are then easily retrieved and read

∀ j = 1, . . . ,J ≤ κ : σ̃
2
j = e

T
j P̃N,θ̃e j ≤

(∆θ̃ j)
2

χ2
α(κ)

. (6.23)

The second component to formulate the least-costly experiment design problem is to define
the cost of the experiment. We define the scaled cost of the experiment, denoted J̃cost , as
the power of the as-of-yet undetermined scaled input signal:

J̃cost [Φ̃ũ] =
T̃s

2π

∫
π/T̃s

−π/T̃s

Φ̃ũ(ω̃)dω̃. (6.24)

Note that this expression is the scaled equivalent of (3.1) for L (e−iω ,θ0) = 1∀ω . The
least-costly experiment design problem is thus formulated as

min
Φ̃ũ

J̃cost [Φ̃ũ] (6.25)

subject to the constraints (6.23) that are equivalent to (c.f. (3.14))

∀ j = 1, . . . ,J : P̃−1
N,θ̃

[Φ̃ũ]� e je
T
j

χ2
α(κ)

(∆θ̃ j)2
(6.26)

Observe that we have rewritten constraints (6.23) into (6.26) by invoking Schur’s comple-
ment in order to ensure that all constraints are linear in the spectrum Φ̃ũ, i.e., we have Lin-
ear Matrix Inequalities (LMI). Consequently, since the cost is also linear in the spectrum,
the optimisation problem (6.25)-(6.26) is linear in the design variable Φ̃ũ. The optimisa-
tion problem is thus convex. Its solution, denoted Φ̃ũ,opt , is the spectrum that minimises
the cost while honouring the constraints. In order to solve this problem numerically we
have to parameterise the input spectrum Φ̃ũ(ω̃). To this end, we can use the parameterisa-
tion (3.6) where the excitation signal is constrained to be a multi-sine. For this purpose, we
discretise the frequency domain into M ∈N+ parts. Defining ω̃ f =

π

MT̃s
as the fundamental

frequency, we have that ω̃m = mω̃ f , for m = 1, . . . ,Mex, where Mex ≤M is the number of
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sinusoids used in experiment design11. Furthermore, the spectrum is given by

Φ̃ũ(ω̃) =
π

2T̃s

Mex

∑
m=1

Ã2
m [δ (ω̃− ω̃m)+δ (ω̃ + ω̃m)] , (6.27)

which corresponds to a MT̃s/2-periodic discrete-time multi-sine

ũ[ j] = ũ( jT̃s) =
Mex

∑
m=1

Ãm sin(ω̃m jT̃s). (6.28)

Substitution of (6.27) into the cost (6.25) and the expression of the covariance matrix
(6.22) gives

J̃cost [Φ̃ũ] =
1
2

Mex

∑
m=1

Ã2
m (6.29)

and

P̃−1
N,θ̃

=
N

2σ̃2
e

Mex

∑
m=1

Ã2
mRe

{[
∇θ̃G̃iu,iy(e

−iω̃mT̃s , θ̃)
]
θ̃=θ̃0

[
∇θ̃G̃iu,iy(e

−iω̃mT̃s , θ̃)
]H

θ̃=θ̃0

}
.

(6.30)
The above two equations show that the cost and covariance matrix are now linear in the
amplitudes Ã2

m. Substitution into the optimisation problem (6.25)-(6.26) then yields a con-
vex finite-dimensional problem in Ã2

m, see also Chapter 3. The integer M determines the
accuracy of the solution. In Appendix 6.B we show how to compute the gradient ∇θ̃G̃iu,iy

efficiently. The solution to the optimisation problem generates the set
{

Ãm,opt
}Mex

m=1. Sub-
stitution of these amplitudes in (6.28) then delivers the scaled optimal input signal ũopt [ j].
The unscaled optimal input signal is easily retrieved via (6.4), i.e. Am,opt = Ãm,optus and
ωm = ω̃m/ts. The resulting unscaled signal is the analog of (6.28).

Remark 6.1 The above procedure pertains to Method 2 of Section 6.3.2. If Method 1
is used for the identification, a very similar procedure can be followed. However, the
gradient of the continuous-time transfer function G̃(iω̃, θ̃0) can be used in (6.30) instead
of the gradient of the discrete-time transfer function. This is allowed due to the data
generation procedure presented in Section 6.3.

Remark 6.2 Notice that the true parameter vector θ̃0 appears in both the constraints
(6.23) and the inverse covariance matrix (6.30). This so-called chicken-and-egg problem,
discussed in Section 3.2.2, is in practice circumvented by replacing θ̃0 in these equations
by an initial guess, θ̃g. Admittedly, this will result in different experiment costs and dif-
ferent parameter variances. Nevertheless, under equal input power, the framework can
deliver signals that result in variances of the parameters that are lower than obtained with
an arbitrary input signal. An illustration will follow in Section 6.5.

Remark 6.3 We have mentioned in the introduction that scaling is of importance in the
least-costly experiment design framework for physical systems. We comment further on
this now. Suppose we want to identify two physical parameters, denoted θ1 and θ2. Their

11Since the Nyquist frequency is chosen a decade above the system’s bandwidth it is generally not necessary
to cover the whole frequency range [0,π/T̃s]
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values can easily differ by ten orders of magnitude, resulting in variances (that are on
the diagonal of PN,θ ) that differ by twenty orders of magnitude. Consequently, the matrix
P−1

N,θ is ill-posed, and the convex methods can no longer solve such problems. However,
with scaling, the parameters are of the same order, resolving the badly-scaled matrix.

Remark 6.4 We mention that in the numerical procedure we require an expression for
∇θ̃G̃iu,iy(z̃, θ̃). The transfer function G̃iu,iy(z̃, θ̃0) being of high order for fine spatial grids,
this can lead to a heavy computational load. Note that nevertheless, as previously men-
tioned, this load can be eased by the method described in Appendix 6.B. Moreover, it is
also to be noted that this gradient computation can be achieved before solving the LMI
problem. Finally, this load becomes negligible if an explicit continuous-time expression
for G̃iu,iy(iω̃, θ̃0) exists, i.e., if we use Method 1. Indeed, as already mentioned above,
the discrete-time transfer function in (6.22) can then be replaced by its much simpler
continuous-time equivalent. We give an example in Section 6.5.

6.4.3 Actuator and Sensor Locations as Design Variables
In the previous section we formulated the LCED framework but assumed that the actuator
and sensor locations iu and iy were given. Since the derivatives of G̃iu,iy (6.21) depend
explicitly on the actuator and sensor locations, we can also attempt to decrease the cost
even further by optimally choosing these locations. Due to the explicit dependence of
the derivatives on the locations the optimal frequencies change with the locations. Con-
sequently, we have to solve the LCED optimisation problem formulated in the previous
section for many combinations of iu and iy. To this end, consider Algorithm 1. The
solution of this algorithm is given by the set of values

{
x̃opt ,Ãopt ,J̃opt

}
containing the

optimal actuator and sensor location, as well as the optimal amplitudes and the optimal
cost. Conversion to the unscaled signal is described in the previous section.

The algorithm makes use of progressive subdivision. The algorithm starts by dividing
the (xu,xy)-plane into four equally-sized squares. For each square, the optimisation prob-
lem is solved at the coordinates that correspond to the centre of the square. From these
four solutions the one that delivers the smallest cost Jcost is selected. At step k+ 1 that
square is subsequently divided into four equally-sized squares for which we again find the
least-costly solution. This procedure is repeated until Nsim divisions have taken place. This
subdivision algorithm is important if the number of variables such as x̃u and x̃y increases.
The algorithm is easily adapted if only one spatial degree is considered (only input or
output location).

The algorithm speed can be improved drastically in cases where dim(θ)≤ 2, for which
we derived analytical solutions in Chapter 4. A properly chosen frequency grid can im-
prove the speed further.

6.5 Case Study: Estimation of diffusivity and conductiv-
ity parameters in front-face experiments

6.5.1 Introduction
In this section we apply the optimal experiment design framework to the identification of
thermal parameters. The experimental set-up is inspired by work of Gabano and Poinot
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Set Nsim as total number of iterations ;
Set α and ∆θi’s to set constraints;
Set Q determining the lowest frequency ω f =

π

MTs
;

Set array Ãopt = {Ãm}Mex
m=1;

Set array x̃opt = [x̃u, x̃y];
Set cost J̃opt = 1×108 (a high value);
x̃u,sub =

1
2 , x̃y,sub =

1
2 ;

k = 0;
while k < Nsim do

∆xu,k = x̃u,sub, ∆xy,k = x̃y,sub ;
for i = 1 to 2 do

xu = (i−1)∆xu,k +
1
2 ∆xu,k ;

for j = 1 to 2 do
xy = ( j−1)∆xy,k +

1
2 ∆xy,k ;

Solve (6.25)-(6.26) using (6.27) and use solution Ã=
{

Ãm
}Mex

m=1 to
compute cost J̃cost [Ã] (6.24);
if J̃cost [Ã]< J̃opt then

x̃u,sub = xu, x̃y,sub = xy;
Ãopt = Ã;
J̃opt = J̃cost ;

end
end

end
xopt = [xu,sub,xy,sub];
k = k+1;

end
Algorithm 1: Progressive subdivision algorithm that finds the minimal experiment
cost by designing the optimal input spectrum and optimal sensor and actuator loca-
tions.
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Figure 6.2: Sketch of the experimental set-up. A rod with length L is heated at the user-chosen actuator position xu. The
temperature is measured at the user-chosen sensor location xy.

(2009) and simulated with the computer. We first introduce the data-generating system
and its scaled equivalent in Section 6.5.2. We then set up the experiment and define the
constraints on the variances of the estimates and compute the optimal input signal in Sec-
tion 6.5.3. We solve the optimisation problem using CVX (Boyd and Grant (2013)). We
also show what the optimal actuator and sensor locations are. In Section 6.5.4 the optimal
input signal is applied to the data-generating system (in a simulation environment) and
with the collected data we identify the physical parameters. In order to test if the variance
constraints are honoured we simulate 2×104 experiments. We also analyze what happens
to the optimal input signal when we replace θ̃0 by an initial guess θ̃g in (6.30).

6.5.2 Data-generating System

We consider a homogeneous rod of length L= 0.05 m oriented along the spatial coordinate
x, see Fig. 6.2. We place the left side of the rod at x = 0, such that the spatial domain we
consider is D = [0,L]. During the experiment, we heat the cross-sectional area of the rod
uniformly at the user-chosen location x = xu with a heat flux u(t) and keep the temperature
constant at the right boundary (x = L), here equal to zero12. We measure the temperature
T (x, t) at the user-chosen position x = xy ∈ D. If xu = xy = 0 the experiment is called
a front-face experiment (Gabano and Poinot (2009)). The optimal actuator and sensor
positions (xu and xy) are determined with Optimal Experiment Design, and are thus design
variables. We assume zero initial conditions.

The dynamics are governed by the equations

∂T (x, t)
∂ t

= α0
∂ 2T (x, t)

∂x2 , (6.31)

−λ0
∂T (x, t)

∂x

∣∣∣∣
x=xu

= u(t), yn f (t) = T (xy, t), and T (L, t) = 0∀t, (6.32)

in which λ0 = 111 W m−1 ◦C−1 is the thermal conductivity and α0 = 3.38×10−5 m2 s−1

the thermal diffusivity. We collect the physical parameters in the vector θ0 = (α0,λ0)
T .

This data-generating system corresponds to the continuous-time second-order PDE (6.1)-
(6.2) for the macroscopic field f (x, t) = T (x, t), input location x = xu, θ1,0 =α0, and θ4,0 =
λ0. Our goal is to identify the physical parameters θ0 = (α0,λ0)

T = (3.38×10−5,111)T .

12If xu = 0 we can easily heat the cross-sectional area. If xu 6= 0 the rod can be heated locally with a thin
thermal band wrapped around the rod
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Non-dimensionalisation

Following Section 6.2.2, we introduce the non-dimensional variables T̃ (x̃, t̃) = T (x,t)
ys

, x̃ =
x
xs

, ũ(t̃) = u(t)
us

, t̃ = t
ts

, and non-dimensional parameters α̃0 =
α0
αs

, λ̃0 =
λ0
λs

. Choosing ys = 1,

xs = L = 0.05, ts = L2

α0
= 73.96, us =

L
λ0ys

= 4.5×10−4, αs = α0, λs = λ0 and substituting
the non-dimensional variables in (6.31)-(6.32) results in the non-dimensional model

∂ T̃ (x̃, t̃)
∂ t̃

= α̃0
∂ 2T̃ (x̃, t̃)

∂ x̃2 , (6.33)

−λ̃0
T̃ (x̃, t̃)

∂ x̃

∣∣∣∣
x̃=x̃u

= ũ(t̃), ỹn f (t̃) = T̃ (x̃y, t̃), and T̃ (1, t̃) = 0∀t̃ (6.34)

Note that we have used an initial guess θg = θ0 for convenience. This results in an unscaled
true parameter vector, θ̃0, that is of O(1).

The non-dimensional continuous-time transfer function G̃x̃u,x̃y(s̃, θ̃0) that couples ũ(t̃)
to the output ỹn f (t̃) (c.f. (6.7)) is derived in Appendix 6.A and reads

G̃x̃u,x̃y(s̃, θ̃0) =
1
λ̃0

√
α̃0

s̃

sinh
(√

s̃
α̃0
(1− x̃y)

)
cosh

(√
s̃

α̃0
(1− x̃u)

) (6.35)

In this equation, the Laplace variable has also been scaled according to (6.4), i.e. s̃ = tss =
sL2/α0. Since we consider a multi-sine excitation signal, we will use this transfer function
in the experiment design procedure for Method 1 in Section 6.3.

6.5.3 Experiment Preliminaries

In this section we define the experiment. We choose the same parameters as in (Gabano
and Poinot (2009)), mainly to compare the excitation frequencies. We remark that we
did not have an actual physical set-up to generate data. Instead, the noise-corrupted output
data is generated with the computer. We set the experiment length at 2000+9000 samples,
where the first 2000 samples are not used in the identification, i.e. we wait until transients
died out. The sampling time is set at Ts = 0.1 seconds. The optimal input signal (which we
will compute shortly) generates the measured output of the data-generating system, given
by

yD[n] = yn f (nTs)+ e[n], (6.36)

where we assumed that the output of the data-generating system yn f (nTs) is corrupted by
zero-mean Gaussian white noise e[n] with variance σ2

e = 0.05 (see also (6.8)).

Optimal Experiment Design

Gabano and Poinot (2009) collected the thousand estimates {α̂N} and
{

λ̂N

}
, which were

distributed around their respective true values α0 = 3.38×10−5 and λ0 = 111 (identical to
the parameters used in this section) with σα = 0.02α0/3 and σλ = 0.01λ0/3. Following
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Section 6.4, we cast these values in the scaled variance constraints (6.23):

σ̃
2
α̃ ≡ σ̃

2
1 ≤

(
0.02

3

)2

, σ̃2
λ̃
≡ σ̃

2
2 ≤

(
0.01

3

)2

, (6.37)

where it is understood that the probability α ≈ 0.99, and that χ2
0.99(2)≈ 9. The optimal ex-

periment design problem is formulated by (6.25)-(6.26). Choosing (6.27) to represent the
scaled spectrum the above constraints, the scaled optimisation problem for this experiment
reads13

min
{Ãm}

1
2

Mex

∑
m=1

Ã2
m (6.38)

subject to the constraints

P̃−1
N,θ̃
� e1e

T
1 σ̃
−2
α̃

, P̃−1
N,θ̃
� e2e

T
2 σ̃
−2
λ̃

. (6.39)

The expression of P̃−1
N,θ̃

is given by (6.30), in which we substituted G̃iu,iy(z̃, θ̃) with the

continuous-time transfer function G̃x̃u,x̃y(s̃, θ̃) in equation (6.35), and used as initial guess
θg = θ0, i.e., θ̃0 = (1.0,1.0)T .

We use Algorithm 1 to find the optimal locations and the optimal input signal for those
locations. To this end, we thus solve (6.25)-(6.26) with the LMI approach. We take
M = Mex = 100. For each combination (x̃u, x̃y) it turns out that the optimal input sig-
nal is a single sinusoid. Interestingly, we find that the lowest cost, i.e. J̃cost =

1
2 Ã2

opt is
obtained at (x̃u, x̃y) = (0,0.12). In unscaled length, this corresponds to xy = 0.12L. The
optimal amplitude Ãopt at x̃u = 0 as a function of x̃y) is depicted in Fig. 6.3b. In practice,
front-face experiments (xu = xy = 0) are common. However, this study suggests that this
is not best practice, as a lower cost (proportional to Ã2) of about 6% can be obtained at
x̃y = 0.12. Equivalently, for the same cost, the variances in the parameters will be about
6% lower since P̃−1

N,θ̃
is proportional to Ã2. Furthermore, observe that the curve increases

rapidly as x̃y increases. Although not shown in the figure, when x̃y→ 1, the optimal am-
plitude Ãopt → ∞. This is a consequence of the boundary condition T̃ (1, t̃) = 0∀t̃ (c.f.
(6.34)). Hence, the informativeness of the data at any frequency is zero at this location.

Although the best estimate can be obtained at (x̃u, x̃y) = (0,0.12), we shall however use
the optimal input signal for x̃u = 0 and sensor location x̃y = 0 to compare with previous
works. In this case, the optimal input signal is computed to be

ũopt(t̃) = 1.7067sin(1.571t̃), (6.40)

which in unscaled variables translates (using the conversion defined in Section 6.5.2) into
the optimal input signal14

u(t) = 3.789×103 sin(0.0212t). (6.41)

13The parameter N in (6.39) is chosen equal to N = 9000. The actual experiment length is 2000+9000, but
we will discard the first 2000 samples in the identification procedure. We thus set N = 9000 in the optimal
experiment design problem.

14This optimal input signal has a different optimal frequency than the case x̃y = 0.12.
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Figure 6.3: (a) Derivatives ∂ G̃x̃u ,x̃y (iω̃, θ̃)/∂ α̃ (red) and ∂ G̃x̃u ,x̃y (iω̃, θ̃)/∂ λ̃ (blue) for x̃u = x̃y = 0 of the transfer function (6.35).
(b) The scaled optimal amplitude Ãopt , i.e. the solution of (6.25)-(6.26), is plotted as a function of scaled output location x̃y for
x̃u = 0.

Observe from Figure 6.3a that the scaled optimal frequency ω̃ = 1.571 lies in between
the two maxima of the derivatives of G̃x̃u,x̃y . This is an intuitively pleasing result, as high
values for the derivatives lead to a large accuracy, see (6.30).

Chicken-and-Egg Problem

The optimal input signal designed in the previous section was designed by using the true
parameter vector θ̃0. In practice, however, we obviously don’t know this vector as we in
fact want to estimate it. As mentioned in Section 6.4, the problem of finding the optimal
signal to identify the parameter vector requires the parameter vector itself. This so-called
chicken-and-egg problem can be circumvented by replacing θ̃0 in (6.30) with a previous
estimate or guess θ̃g. This inevitably leads to a designed input signal that is not optimal.
Optimal input design can however still be used and will generally lead to better estimates
than arbitrary signals under the same experiment cost.

A central question is the sensitivity of the cost of the experiment to the initial guess
θ̃g, and whether or not the constraints will still be honoured. To this end we computed
the optimal amplitude and frequency for many values of θ̃g using (6.38)-(6.39). The range
in which these values lie is larger than the desired accuracy of estimates from the identi-
fication experiment. In Fig. 6.4a the optimal amplitude is shown for values of λ̃ and α̃

around 10% of λ̃0 = 1 and α̃0 = 1 (the case for which θg = θ0). Observe that within this
range the optimal amplitudes can differ up to 30% from the one obtained with θ̃0 = θ̃g,
i.e., Aopt = 1.7067 (c.f. (6.40)). The cost of the experiment is thus rather sensitive to the
guess θ̃g. In Fig. 6.4b the optimal frequencies as a function of θ̃g are shown. It can be
observed that the optimal frequency is not sensitive to a wrong guess α̃g for a given guess
λ̃g. To test whether the constraints will still be honoured, and how large the error in the
estimates is when using the optimal input signal designed with θg 6= θ0, we proceed as
follows. For each guess θ̃g we use the corresponding optimal amplitude and frequency of
Figs. 6.4a and 6.4b, and apply this input signal to the true system. We then obtain the
variances in the estimates ˆ̃αN and ˆ̃

λN as a function of θ̃g. We use the following measure
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Figure 6.4: (a) The optimal amplitude resulting from the optimisation problem (6.38)-(6.39) is plotted as a function of the initial
estimate θ̃g = (α̃, λ̃ )T . This initial estimate is used to circumvent the chicken-and-egg issue. (b) The optimal frequency resulting
from the optimisation problem (6.38)-(6.39) is plotted as a function of the initial estimate θ̃g = (α̃, λ̃ )T . (c) The relative error
(6.42) is plotted as a function of the initial estimate θ̃g.
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of error:

e(θ̃g) =
1
2

[
var ˆ̃αN(α̃g)−var ˆ̃αN(α̃0)

var ˆ̃αN(α̃0)
+

var ˆ̃
λN(λ̃g)−var ˆ̃

λN(λ̃0)

var ˆ̃
λN(λ̃0)

]
(6.42)

We found that the relative error in the considered interval lies between 0 and 30%, see
Fig. 6.4c. Also, it is clear that a strong correlation exists with Fig. 6.4a: if the optimal
amplitude is larger or equal to Ãopt = 1.7067 ((α̃, λ̃ ) = (1,1)) we obtain variances that are
smaller or equal to the case θg = θ0. Conversely, we do not satisfy the constraints if the
optimal amplitude is smaller than Ãopt = 1.7067. This result could have been anticipated
based on the analytical solution for bi-parametric models in Chapter 4.

6.5.4 Identification Results

In this section we identify the physical parameters θ̃0 with the optimal input signal com-
puted in the previous section (6.40). We use Method 2 as detailed in Section 6.3. The
resulting unscaled data set ZN is defined by scaling (6.36) and the scaled sampled equiva-
lent of the input (6.41). We remind the reader that we consider the case xu = xy = 0. The

data set Z̃N =
{

uD[ j]
us

, yD[ j]
ys

}11000

j=2001
, where us and ys are defined in Section 6.5.2. Note that

we discard the first 2000 samples to remove transients. Simulation of the scaled noise-
free output ỹn f (t̃) (6.34) is done according to Section 6.3.2 where we chose ∆t̃ = Ts/ts
and M = 200. The simulated noise-free output ỹsim[ j] for j = 2001, . . . ,11000 is then
used together with the scaled measured data yD[ j]/ys in Z̃N in the least-squares procedure
(6.9). For one experiment we found the scaled estimates resulting from this procedure to
be ˆ̃αN = 1.01 and ˆ̃

λN = 1.005, corresponding to unscaled estimates α̂N = 3.414× 10−5

m2 s−1 and λ̂N = 111.56 W m−1 ◦C−1. These estimates fall within the respective intervals
[λ0−0.01λ0,λ0 +0.01λ0] and [α0−0.02α0,α0 +0.02α0] that we set in Section 6.5.3.

Monte Carlo Simulations, Experiment 1: Validating the Variance Constraints

To validate whether the variance constraints are honoured, we ran 2× 104 Monte Carlo
simulations to identify the scaled physical parameters α̃0 = 1 and λ̃0 = 1 with the optimal
signal (6.40). (In other words, twenty thousand data sets ZN were generated and for each
the identification procedure was applied). The identified parameters α̃N and λ̃N for all
experiments are shown in Fig. 6.5. The mean value of the coordinate θ̃N = (α̃0, λ̃0)

T is
indicated by the red cross. The constraints set in Section 6.5.3 are visualised by the square
resulting from intersection horizontal and vertical dashed black lines.

Observe that almost none of the estimates θ̃N lies outside the region of constraints. The
computed variance for α̃N and λ̃N are respectively var(α̃N) = 3.615×10−5 and var(λ̃N) =
1.1108× 10−5. Clearly, the optimal input signal designed in the previous section hon-
ours the constraints. The experiment design procedure ensured that the confidence ellipse
’touches’ the horizontal constraints, whereas the variance in α̃N is in fact a bit smaller.
This is not surprising, as explained in Chapter 4.

Under the same experiment length, parameter values α0,λ0, and rod length L, Gabano
and Poinot (2009) obtained estimates with slightly lower accuracy in the estimates. How-
ever, they used more input signal power than is used in our experiment. The input signal
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Figure 6.5: Twenty thousand identified vectors θ̃N are indicated by the blue open circles, the mean value of θ̃N over all Monte
Carlo simulations by the red cross, and the constraints on the parameters α̃N and λ̃N by the square generated through the inter-
section of the dashed black lines.

they considered was a pseudo-random binary excitation signal with a power distribution
in the higher frequencies, up to 20rad/s. Our result suggests that one should instead use
a very low excitation frequency, i.e. 0.02 rad/s to get the most accurate estimates. As
shown in Fig. 6.4b, choosing high frequencies leads to matrix P−1

N,θ̃
that is much smaller

than using one that is close to the maxima of the derivatives. Intuitively, it means that the
system is not sensitive to high-frequency input signals.

Our results also suggest that higher accuracy can be obtained by measuring at x̃y = 0.12
as shown in Figure 6.4a. The ratio of the optimal amplitude between x̃y = 0 and x̃y = 0.12
is 1.03. As P̃−1

N,θ̃
is proportional to Ã2, it means that 1.032 higher accuracies can be obtained

using the same input power.

Monte Carlo Simulations, Experiment 2: Chicken-and-Egg Problem Revisited

In Section 6.4 we mentioned that LCED suffers from the chicken-and-egg problem. In this
section we show that we can still find estimates that honour the user-imposed constraints,
even if we don’t know exactly θ̃0.

To this end suppose that we start without any prior knowledge on θ0. We run an
experiment of length N/2 and apply a white-noise input signal15 with high variance σ̃2

wn =

25. This delivers us an estimate ˆ̃θwn. At this point, we compare two scenarios: (i) we apply
optimal experiment design to find the optimal input signal that guarantees the constraints
(6.37) based on the initial guess θ̃g =

ˆ̃θwn for an experiment length of N/2, or (ii) continue
with applying a white-noise signal that has the same power as the optimal input signal and
equal experiment length. Both scenarios thus have equally-powered input signals and the
experiments have equal length.

Using Monte Carlo simulations, we first generate 500 white-noise realisation with vari-

15Note that we now can only use Method 2 of Section 6.3 because the input signal is no longer periodic,
whereas in Experiment 1 we could have also opted for Method 1 since the input signal is periodic and a closed-
form transfer function exists.
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Figure 6.6: Monte Carlo simulations. The red circles correspond to initial estimates resulting from identification experiments
in which white-noise excitation signals were used. For each initial guess (red circles), a LCED problem is solved in which the
true parameter vector has been replaced by the estimate. The resulting optimal input signal is subsequently applied and the new
experiment data is used to compute a new estimate. These estimates are shown in blue. The green circles are a collection of
estimates obtained by applying white-noise excitation signals, each having the same power as one of the optimal input signals
(used to obtain the blue estimates).

ance σ̃2
wn = 25 that generate 500 estimates ˆ̃θwn, which we collect in the set

{
ˆ̃
θwn

}
. These

estimates are shown in red in Fig. 6.6. Next, for each of the estimates, we run scenario
(i) and (ii). The estimates resulting from scenario (i) and (ii) are shown in blue and green
in Fig. 6.6, respectively. We find that the variances of the estimates in scenario (i) are
var( ˆ̃αN/2) = 3.1381×10−5 and var( ˆ̃

λN/2) = 9.2074×10−6, which are both smaller than
the required variances of respectively 4.44×10−5 and 1.11×10−5. The equally-powered
white noise realisations of scenario (ii) deliver much worse estimates.

Since both scenarios generate signals that are equally long and equally-powered, these
Monte Carlo simulations clearly illustrate the advantage of optimal experiment design.

The above approach is the classical approach to tackle the chicken-and-egg problem.
More involved approaches exist. In these approaches, the initial guess and the optimal
spectrum are adapted throughout the experiment; see e.g. the works of Gerencsèr et al.
(2009), Larsson et al. (2013), and Forgione et al. (2013).

6.6 Summary
The main novelty of this chapter is the introduction of a systematic way to identify phys-
ical parameters in linear physical systems in a least-intrusive manner while guaranteeing
accuracy on the to-be-identified parameters. We have in particular shown how to apply the
theory of least-costly experiment design to structured processes governed by linear PDEs
with constant coefficients.

To this end, we made use of a discretisation using the Crank-Nicolson stencil to trun-
cate the continuous-time model to find a discrete-time transfer function that couples the
input and output. This transfer function is then also guaranteed to be stable. This inte-
gration scheme is not only unconditionally stable, but also more accurate than the Euler
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stencil. The resulting truncated model is a state-space realisation that is explicit in the
physical parameters. We then showed how optimal experiment design can be applied. The
second novelty of this chapter is the generalisation of the experiment design framework
to find not only optimal amplitudes and frequencies, but also optimal actuator and sensor
locations.

We applied our methodology to the estimation of two thermal parameters in a front-
face experiment. This study showed that current practice, i.e. placing the sensor and
actuator at position x = 0, in fact does not deliver the best possible estimates. Our study
suggests that placing the sensor location at a distance of 12% of the total length of the rod
from the actuator position yields estimates that are 6% better. Applying the optimal input
signals designed in the case study furthermore shows that the input power can be reduced
considerably in comparison to previous experiments.

Future work could be focussed on generalising the method to nonlinear PDEs, since many
physical systems in real-life are in fact nonlinear. For these systems, one can analyse
whether or not linearisation is feasible. If it is not feasible, it would be interesting to gen-
eralise the LCED framework to Linear Parameter Varying systems. Such systems can be
used to approximate a nonlinear system while still having excess to the powerful linear
methods.

6.A Derivation of continuous-time transfer function of 1D
diffusion equation

We consider the one dimensional problem of a diffusion process on a line with domain
D= [0,L]. The physical parameters are collected in the vector θ= (θ1,θ2)

T . The problem
is defined by

∂ f (x, t)
∂ t

= θ1
∂ 2 f (x, t)

∂x2 (6.43)

subject to the boundary conditions

φ(x, t) =−θ2
∂ f (x, t)

∂x
, f (L, t) = 0∀t

We define the input of the system by u(t) = φ(xu, t) and the output yn f (t) = f (xy, t), where
xu,xy ∈D denote the input and output location on the line. To solve the problem, we first
apply the Laplace transform to the above equations:

sF(x,s) = θ1
∂ 2F(x,s)

∂x2 (6.44)

Φ(x,s) = −θ2
∂F(x,s)

∂x
. (6.45)

The general solution to (6.44) reads

F(x,s) = c1e
√

s
θ1

x
+ c2e

−
√

s
θ1 , (6.46)
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where c1 and c2 are real constants that will be determined from the boundary conditions.
From this equation, it follows that (6.45) becomes

Φ(x,s) =−θ2

√
s

θ1

{
c1e

√
s

θ1
x− c2e

−
√

s
θ1

x
}
. (6.47)

We also have that the input and output in the Laplace domain read U(s) = Φ(xu,s) and
Yn f (s) = F(xy,s). We can thus write

U(s) = Φ(xu,s) =−θ2

√
s

θ1

{
c1e

√
s

θ1
xu − c2e

−
√

s
θ1

xu
}

from which follows that

c1 = e
−
√

s
θ1

xu
{
− 1

θ2

√
s

θ1
U(s)+ c2e

−
√

s
θ1

xu
}
. (6.48)

Furthermore, from (6.46) and the boundary condition F(L,s) = 0 ∀s we get

F(L,s) = c1e
√

s
θ1

L
+ c2e

−
√

s
θ1

L
= 0 → c2 =−c1e

2
√

s
θ1

L
. (6.49)

We can now combine (6.48) and (6.49) to find that

c1 = − 1
θ2

√
θ1

s
e
−
√

s
θ1

xu

1+ e
2
√

s
θ1

(L−xu)
U(s),

c2 =
1
θ2

√
θ1

s
e
−
√

s
θ1

(xu−2L)

1+ e
2
√

s
θ1

(L−xu)
U(s).

Next, we can write the expression for Yn f (s) = F(xy,s) which reads

Yn f (s) = c1e
√

s
θ1

xy
+ c2e

−
√

s
θ1

xy

= − 1
θ2

√
θ1

s
e
−
√

s
θ1

(xu−xy)

1+ e
2
√

s
θ1

(L−xu)

{
1− e

2
√

s
θ1

(L−xy)
}

U(s).

Hence, the transfer function between input and output reads

Gxu,xy(s,θ) =
Yn f (s)
U(s)

=− 1
θ2

√
θ1

s
e
−
√

s
θ1

(xu−xy)

1+ e
2
√

s
θ1

(L−xu)

{
1− e

2
√

s
θ1

(L−xy)
}
,

which can be further simplified to

Gxu,xy(s,θ) =
1
θ2

√
θ1

s

sinh
[√

s
θ1
(L− xy)

]
cosh

[√
s

θ1
(L− xu)

] .
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Substitution of f (x, t) = T (x, t) in (6.43) and following the same calculations yields the
equation above. Finally, setting θ1 = α0 and θ2 = λ0 results in Gxu,xy(s,θ0), in which
θ0 = (α0,λ0)

T . In a similar fashion the continuous-time transfer function between the
scaled input and scaled output can be derived for (6.33)-(6.34), yielding

G̃x̃u,x̃y(s̃, θ̃) =
1
θ̃2

√
θ̃1

s̃

sinh
[√

s̃
θ̃1
(1− x̃y)

]
cosh

[√
s̃

θ̃1
(1− x̃u)

] .
This equation is equal to (6.35) after substitution of θ̃ = θ̃0 = (α̃0, λ̃0)

T .

6.B Computation of the Gradient

n this appendix we show how to compute the gradient ∂Giu,iy/∂θ in (6.30) evaluated at θ=
θ0 for given iu, iy. We start from equation (6.30), which we here recall for convenience:

Giu,iy(z,θ) =C [zI−A(θ)]−1B(θ). (6.50)

In this equation, I is the (V + 1)× (V + 1) identity matrix, A(θ) = E−1A, B(θ) =
E−1B(1 + z), and C = C. Here, z = eiωTs and E , A, B, and C are given by (6.16)-
(6.18). Making use of the identities ∂U−1

∂x =−U−1 ∂U
∂x U

−1 and ∂ (UV )
∂x =U ∂V

∂x + ∂U
∂x V ,

whereU ,V equally-sized matrices and x a scalar, we find that the derivative of (6.50) with
respect to parameter θi reads

∂Giu,iy(z,θ)
∂θi

=C [zI−A(θ)]−1
{

∂B(θ)

∂θi
+

∂A(θ)

∂θi
[zI−A(θ)]−1B(θ)

}
. (6.51)

The derivatives ofA(θ) = E−1(θ)A(θ) andB(θ) = E−1(θ)B(θ)[1+ z] w.r.t. θi are

∂A(θ)

∂θi
= −E−1(θ)

∂E(θ)
∂θi

E−1(θ)A(θ)+E−1(θ)
∂A(θ)

∂θi
, (6.52)

∂B(θ)

∂θi
=

(
−E−1(θ)

∂E(θ)
∂θi

E−1(θ)B(θ)+E−1(θ)
∂B(θ)

∂θi

)
[1+ z]. (6.53)

Substitution of (6.52) and (6.53) into (6.51) finally gives

∂Giu,iy(z,θ)
∂θi

=

C [zI−A(θ)]−1E−1(θ)(1+ z)
{(

∂B(θ)

∂θi
+

∂A(θ)

∂θi
[zI−A(θ)]−1E−1(θ)B(θ)

)
−∂E(θ)

∂θi
E−1(θ)

(
B(θ)+A(θ) [zI−A(θ)]−1E−1(θ)B(θ)

)}
(6.54)

In this equation, the derivatives can be found analytically using (6.16), (6.18). To evaluate
this equation at θ = θ0 for all parameters θi ∈ θ it is most efficient to follow these steps:
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1. Calculate all terms independent of z in (6.54) for θ = θ0 once and store these.

2. Evaluate for θi the expression (6.54) at frequency ω by substituting z = exp(iωTs)

3. Repeat step (2) for all other i = 1, . . . ,dim(θ).

4. Repeat step (2)-(3) until the gradient is computed for all required frequencies ω .

Combining the derivatives of each element in the parameter vector then gives the gradient.
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LCED for Core-Scale Pressure
Oscillation Experiments

”Prediction is very difficult, especially if it’s about the future.” - Niels Bohr

7.1 Introduction
In this chapter, we will use the concepts introduced in Chapter 6 and apply them on a
relevant problem in petrophysics. We define this problem below.1

Two key parameters influencing fluid flow in a porous medium are permeability (i.e.
inverse resistance) and porosity (i.e. storage capacity). These parameters are important
to characterise fluid flow in underground water resources (Cardiff et al. (2013)), contam-
inated water disposal in underground storages (Song and Renner (2007)), and subsurface
hydrocarbon reservoirs (Wang and Knabe (2011)). Indeed, permeability and porosity es-
timates are used to initialise reservoir simulations, optimise the number of wells and their
locations, and drilling and completion procedures.

Estimation of both parameters locally can be carried out by performing an experiment
on a cylindrically-shaped core sample of the porous medium, using either steady-state
(SS), unsteady-state (USS), or pressure oscillation (PO) measurements. In an SS experi-
ment a constant pressure difference is applied across the axis of the core sample and subse-
quently the flow rate is measured after the SS condition has been established. Permeability
is then estimated based on the relationship between the flow rate and the pressure drop.
In an USS experiment an impulse or step pressure change is applied at the upstream side
of the sample while the pressure change is recorded downstream. The observed response
is then analysed either graphically or numerically to estimate the unknown parameter(s).
Similarly, in a PO experiment, the recorded downstream pressure response is analyzed for
parameter estimation - the difference being that an oscillatory pressure signal is applied
upstream. The attenuation and phase shift between the up- and downstream signals are
then translated into parameter estimates (Fischer (1992); Heller et al. (2002)). The os-
cillatory signal is usually a single sinusoid with a frequency and amplitude specified by
the experimenter. The amplitude of the upstream signal is however bounded by the limits

1Parts of this chapter have been published in (Potters et al. (2016c)).
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of the actuator. In cases where a rather high actuator frequency is necessary to take into
account geometrical and physical properties of the sample, Boitnott (1997) suggested the
use of input signals with complex shapes including the required high frequencies.

The consensus in the literature is that a PO experiment has several advantageous prop-
erties not shared by its SS and USS counterparts, e.g., less experiment time, less stress
on the core sample, and the possibility of simultaneously estimating permeability and
porosity (Bernabé and Evans (2006); Song and Renner (2007)). The effectiveness of PO
experiments for the estimation of permeability has been demonstrated in different set-ups
(Heller et al. (2002); Wang and Knabe (2011); Suri et al. (1997); Hasanov and Batzle
(2013); Boitnott (1997)). Despite its advantageous properties, however, it is observed that
measurements can result in large uncertainties in the estimates, particularly for porosity
(Bernabé and Evans (2006); Song and Renner (2007); Wang and Knabe (2011)). Porosity
estimates with an uncertainty exceeding an order of magnitude, or that have negative val-
ues, have been reported by e.g. Song and Renner (2007) and Bernabé and Evans (2006).
One cause is measurement noise, but in this chapter we show that other ones also play an
important role.

Furthermore, it is important to be able to reduce the experiment time without loss
of accuracy. In such a case, more core samples can be analysed in a given time, which
consequently reduces the experiment costs. Analogously, given a maximum experiment
time, it is important to get the best possible estimates.

Clearly, the challenge of estimating permeability and porosity with high accuracy re-
mains, especially in evaluating the production potential of tight formations in unconven-
tional hydrocarbon reservoirs (Wang and Knabe (2011)) or the sealing characteristics of
the cap rock in underground storage (Song and Renner (2007)).

Motivated by the above problems we raise the question whether we can, for a PO ex-
periment, design the applied upstream pressure signal in order to increase parameter accu-
racies. The dependence of the accuracy of the estimates on the selected driving frequency
has been first pointed out by Kranz et al. (1990), although no investigation into this topic
was pursued. Besides the optimisation of the excitation signal, we will also optimise si-
multaneously the degrees of freedom (DOF) in the experiment set-up to further improve
the results. This is similar to what we have done in Chapter 6 where the optimisation of
the actuator and sensor locations were used for the same objective.

We will formulate the optimal experiment problem in a slightly different way than
in the previous chapters. This alternative formulation is motivated by the limitation of
the amplitude of the actuator. As a consequence we define the following optimisation
problem: find the minimal experiment time required to guarantee user-imposed variance
constraints on the estimates by utilising DOF in the experiment set-up as well as designing
the to-be-applied upstream pressure signal, ensuring that this signal has an amplitude that
honours the actuator limits.

In a PO experiment, the actuator can generally only generate excitation signals in the
form of a single sinusoid or a square wave (Heller et al. (2002)). We shall thus limit our-
selves to the design of such actuator signals.

We apply our method to the Dynamic Darcy Cell experiment set-up, as detailed in (Heller
et al. (2002)), but we stress that our methodology can be applied to many other set-ups as
well. The DOF in the Dynamic Darcy Cell set-up are the inlet volume and outlet volume.
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We introduce the Dynamic Darcy Cell in Section 7.2 and show how to apply sinusoidal
and square wave signals to the set-up. Two types of measurements are then introduced:
inlet pressure/outlet pressure measurements (Direct Method) and actuator position/outlet
pressure measurements (Indirect Method). The former is one of the current ways to es-
timate parameters (Heller et al. (2002)), in particular using sinusoidal signals. The latter
has, to the best of our knowledge, not been investigated before. For both cases, we focus
on square wave input signals, for which we prove that shorter experiment lengths than for
sinusoidal ones can be obtained. We explain the data collection and estimation procedure
in Section 7.3, and give an expression for the covariance matrix of the estimated param-
eters. In Sections 7.4 and 7.5 we use this expression to compute the optimal sinusoidal
and square wave signals and DOF that minimise the experiment time for the estimation of
permeability and porosity for the Direct and Indirect Methods. In the absence of a phys-
ical set-up, we illustrate the experiment design results by simulating the noise-corrupted
physical system and applying the optimal square wave signal in Section 7.6. Lastly, we
draw conclusions in Section 7.7.

7.2 The Dynamic Darcy Cell

7.2.1 The Set-Up

To investigate the estimation problem the Dynamic Darcy Cell by Heller et al. (2002) is
considered. A detailed and schematic layout of this set-up are depicted in Figs. 7.1 and
7.2. A cylindrically-shaped porous core sample is mounted vertically in a core holder
under a specific confined pressure pinit , with the inlet at the bottom (upstream side) and
outlet at the top (downstream side). The sample with length L and cross-sectional area A
is sealed at the top from the environment. The spatial coordinate axis x is oriented towards
the outlet and is perpendicular to the cross-sectional plane. The bottom of the sample is
located at x = 0. A vibration exciter with equilibrium position x = −Li, also called the
actuator, is moved according to the user-defined oscillatory signal r(t). As in Chapter 6,
we suppose that the excitation signal is a continuous-time signal. The actuator position is
either a sinusoid, i.e.,

r(t) =Cγ sin(ωext), (7.1)

or a square wave2,

r(t) =
4
π

Cγ

∞

∑
m=1

sin([2m−1]ωct)
2m−1

. (7.2)

In these expressions, ωex and ωc in respectively (7.1), (7.2) represent the excitation fre-
quency of the sinusoid and cycle frequency (slowest mode) of the square wave. In the se-
quel, our objective will be to determine the optimal pair {Cγ ,ωex} for the parameterisation
(7.1) or the optimal pair {Cγ ,ωc} for (7.2) in order to identify the sample’s permeability
and porosity values. This situation is very close to the one of Chapter 4 and we will see
that, here also, we will be able to determine the solution analytically. Finally, note that,
since we only identify two parameters, the single sinusoid (7.1) is sufficient to lead to
consistent estimates (under Assumption 4.1).

2Until now, such a signal has not yet been considered. However, this signal can be seen as a multi-sine with
a specific amplitude end-phase pattern.
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Figure 7.1: The Dynamic Darcy Cell. The core sample is mounted vertically in the holder. The actuator induces a pressure
signal at inlet, measured by pressure transducer 1. The wave propagates through the porous core and is measured at the outlet by
pressure transducer 2. Courtesy of Heller et al. (2002). The bandwidth of the actuator is much larger than the bandwidth of the
system.

The symbol Cγ represents the amplitude of the actuator signal defined by

Cγ = γLi, 0 < γ ≤ γm. (7.3)

Obviously, the actuator amplitude can not exceed the length Li as can be seen from Fig.
7.2, so the user-chosen factor γ has a geometric constraint γ ≤ γm = 1. However, the
actuator amplitude may not necessarily be limited by the geometry of the setup but by its
own movement restrictions, yielding a γm that is smaller than unity.

The square wave signal can be generated in practice by switching abruptly between
+Cγ and −Cγ . The actuator induces an upstream (inlet) pressure signal at position x = 0,
i.e.,

pi(t) = p(x = 0, t), (7.4)

within the inlet volume Vi that is connected to the sample. This signal is measured by
pressure transducer 1 (see Fig. 7.1) and assumed to be corrupted by sensor noise. At the
sample outlet, which is connected to the end volume Ve, the output (downstream) pressure

pe(t) = p(x = L, t) = yn f (t) (7.5)

is measured by pressure transducer 2 at x = L, see Fig. 7.1. Here, yn f (t) = pe(t) = p(x =
L, t) is the noise-free pressure response of the core sample3. The measurements taken by
this pressure transducer are corrupted by sensor noise. We shall return to this point when
we explain the estimation method in Section 7.3. The inlet and outlet volumes Vi and Ve
can be set by the experimenter and are part of the DOF of the experiment set-up4. Prior
to the experiment the core, the inlet and outlet volume are filled with a gas (e.g. air) at
pressure pinit .

3The input and output are continuous time signals. In Section 7.3 we will use sampled input and output data
for parameter estimation.

4The set-up can for instance be designed to have easily-adaptable inlet and outlet volumes.
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Figure 7.2: A sketch of the Dynamic Darcy Cell, rotated ninety degrees clock-wise. The cylindrical core sample is depicted in
between the inlet volume Vi and outlet volume Ve. The sample has a cross-sectional area A and length L. The signals pi(t) and
pe(t) are measured by pressure transducer 1 and 2 respectively, see Fig. 7.1. The actuator is visualised by the blue disk that can
oscillate around its equilibrium position x =−Li.

Quantity Value

Length L 0.0512 m
Cross-sectional area A π 0.03752/4 m2

Permeability k0 2.0×10−13 m2

Porosity φ0 0.2
Fluid density ρ 1.225 kg m−3

Viscosity µ 1.84×10−5 Pa s
Bulk modulus K 1.0×105 Pa

Table 7.1: Parameters defining the Dynamic Darcy Cell and the core sample. The parameters k0 and φ0 need to be estimated.
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7.2.2 System of Coupled Equations in the Time Domain

In the set-up we consider a porous cylindrical core that is homogeneous and isotropic with
constant porosity φ and permeability k, and assume that the compressibility of the medium
is small compared with the compressibility of the gas and therefore considered constant.
Usually, both φ and k have to be identified. The core is defined in Table 7.1. Gravity forces
and pressure dependencies of the viscosity µ are neglected and isothermal conditions are
assumed.

We now derive the dynamics within the experiment set-up. We shall consider the
inlet volume, the porous medium, and outlet volume as three subsystems with their own
dynamics, input and output, and boundary conditions. The subsystems are interconnected
at the inlet (x = 0) and outlet (x = L) locations. We shall use the dynamics to derive the
relationship between the inlet pressure to outlet pressure signals, and the actuator position
to outlet pressure signals in Section 7.2.4.

Subsystem I: The Inlet Volume

The actuator is a piston that vibrates in the x-direction within a confined gas in the inlet
volume Vi = ALi, where Li is the length of the inlet. The dynamics of the gas volume as
a consequence of the moving piston is governed by the momentum and mass conservation
laws, which for this particular configuration read

∂w
∂ t

+w
∂w
∂x

+
1
ρ

∂ p
∂x

= 0, (7.6)

∂ρ

∂ t
+w

∂ρ

∂x
+ρ

∂w
∂x

= 0, (7.7)

where w = w(x, t) is the velocity profile of the gas in the x-direction, ρ the density of the
gas, and p= p(x, t) the pressure profile. We assume that the actuator has a small amplitude.
In this case we may linearise (7.6)-(7.7) around the pressure pinit and winit

5. Furthermore,
we assume isothermal conditions and therefore replace 1

ρ

∂ρ

∂ t with 1
K

∂ p
∂ t , where K = ρ

∂ p
∂ρ

the Bulk modulus. Equations (7.6)-(7.7) then reduce to

∂w
∂ t

+
1
ρ

∂ p
∂x

= 0, (7.8)

1
K

∂ p
∂ t

+
∂w
∂x

= 0. (7.9)

Lastly, we take the derivative of (7.8) with respect to x and the derivative of (7.9) with
respect to t and combine the two, resulting in

∂ 2 p
∂x2 =

ρ

K
∂ 2 p
∂ t2 , (7.10)

∂w
∂ t

=− 1
ρ

∂ p
∂x

. (7.11)

5The factor γm in (7.3) is thus either defined by limitations in the actuator movement or by the linearisation
condition, whichever is most restrictive.



7.2 The Dynamic Darcy Cell 111

Figure 7.3: The network representation of the experimental setup. The dynamics inside the subsystems I and III are contained
in respectively the left and right blue-dotted squares, whereas the dynamics in subsystem II is contained in the centre, red-dotted
square.

The boundary conditions, i.e. inputs, of this subsystem are given by

w(x =−Li, t) =
∂ r(t)

∂ t
, w(x = 0, t) = wi(t), (7.12)

where r(t) is the movement of the actuator as a function of time, and wi(t) the inlet gas
speed. We neglect friction effects between the wall of the inlet volume and the actuator6.
The outputs of this subsystem are

p(x =−Li, t) = pv(t), p(x = 0, t) = pi(t). (7.13)

This subsystem is shown in Fig. 7.3 in the left blue-dotted square. Notice that it is con-
nected to subsystem II through the output pi(t), being the inlet pressure, and the inlet gas
speed wi(t). We now continue with the dynamics in the porous medium.

Subsystem II: The Porous Medium

For the second system, i.e. the porous medium, mass conservation and Darcy’s law show
that the pressure change in the core is governed by the diffusion equation

∂ p(x, t)
∂ t

=
kK
µφ

∂ 2 p(x, t)
∂x2 . (7.14)

The specific discharge, or Darcy velocity, inside the porous medium is related to pressure
by

w(x, t) =− k
µ

∂ p(x, t)
∂x

. (7.15)

6The signal distortion caused by friction depends on how the set-up is actually designed, and has to be tested
on the actual set-up. Square wave actuator signals are generated in practice by switching abruptly between +Cγ

and −Cγ . Hence, as long as the actuator driving mechanism is strong enough, friction effects do not play a role.
Sinusoidal actuator signals can, depending on the severity of the friction, be distorted by the nonlinear friction.
In that case one could opt for measuring the actuator position, which can be done with high accuracy. A feedback
control scheme can then be designed that ensures that the actual movement of the actuator follows the designed
sinusoidal signal.
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Note that this velocity is different to those in the inlet and outlet volumes (subsystems I
and III). The boundary conditions, i.e. inputs, for this subsystem read

p(x = 0, t) = pi(t), w(x = L, t) = we(t), (7.16)

in which pi(t) is the inlet pressure defined previously, and we(t) the outlet gas speed. The
outputs are defined by

w(x = 0, t) = wi(t), p(x = L, t) = pe(t). (7.17)

This subsystem is shown in Fig. 7.3 in the centre, red-dotted square. Note that the first
and second subsystem are now connected. What remains is to connect subsystem II with
subsystem III. We shall now derive the dynamics in the latter.

Subsystem III: The Outlet Volume

In the third subsystem, following the same reasoning as for the first subsystem, the dy-
namics are determined by the conservation of mass and momentum. The pressure profile
follows the wave equation and reads (c.f. (7.10))

∂ 2 p
∂x2 =

ρ

K
∂ 2 p
∂ t2 , (7.18)

∂w
∂ t

= − 1
ρ

∂ p
∂x

. (7.19)

The boundary conditions are however different from subsystem I and are given by

p(x = L, t) = pe(t), w(x = L+Le, t) = wo(t), (7.20)

in which wo(t) is an as-of-yet unspecified input for subsystem III. The outputs are defined
by

w(x = L, t) = we(t), p(x = L+Le, t) = po(t), (7.21)

where we(t) is the gas speed at the outlet and po(t) the pressure at the boundary x = L+Le.

At this point, we have defined all dynamics in the experiment set-up. The three sub-
systems are now connected through their boundary conditions and outputs. We proceed
by introducing the scaled set-up. The scaled equations are then used to find the dynamic
relationship between the actuator, inlet pressure, and outlet pressure.

7.2.3 Scaling

We are interested to identify the porosity and the permeability of the porous medium. As
shown in Table 7.1, the values of these parameters differ by twelve orders of magnitude.
It is thus very important for the sake of numerical computations to scale the dynamical
equations in such a way that the to-be-identified parameters are both of O(1). To this end,
we first choose ks and φs equal to the order of magnitude of k and φ (which are usually
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known) and define the dimensionless parameters

k̃ =
k
ks
, φ̃ =

φ

φs
. (7.22)

Furthermore, we also define the following dimensionless variables

x̃ =
x
L
, p̃(x̃, t̃) =

p(x/xs, t/ts)
ps

, t̃ =
t
ts
, w̃(x̃, t̃) =

w(x/xs, t/ts)
ws

. (7.23)

We note that the actuator signal r(t) should be scaled in time and space according to the
above definitions, resulting in r̃(t̃) = r(t/ts)

L . The scaled frequency ω̃ follows from the
above-defined time scaling and is given by ω̃ = ωts. Lastly, choosing

ps =
K
φs
, ts =

φsµL2

ksK
, ws =

ks ps

µL
, (7.24)

leads to equations with O(1) terms when substituting (7.22)-(7.24) into the equations of
subsystem I to III (7.10)-(7.18). The scaled system is thus given by

∂ 2 p̃(x̃, t̃)
∂ x̃2 =

ρL2

K
t−2
s

∂ 2 p̃(x̃, t̃)
∂ t̃2 , (7.25)

∂ w̃
∂ t̃

= − ts ps

ρwsL
∂ p̃
∂ x̃

, (7.26)

∂ p̃(x̃, t̃)
∂ t̃

=
k̃
φ̃

∂ 2 p̃(x̃, t̃)
∂ x̃2 , (7.27)

w̃(x̃, t̃) = −k̃
∂ p̃(x̃, t̃)

∂ x̃
, (7.28)

with the scaled boundary conditions (7.12), (7.16), (7.20)

w̃(x̃ =−Li

L
, t̃) =

∂ r̃(t̃)
∂ t̃

, w̃(x̃ = 0, t̃) = w̃i(t̃), (7.29)

p̃(x̃ = 0, t̃) = p̃i(t̃), w̃(x̃ = 1, t̃) = w̃e(t̃), (7.30)

p̃(x̃ = 1, t̃) = p̃e(t̃), w̃(x̃ = 1+
Le

L
, t̃) = w̃o(t̃), (7.31)

and outputs (7.13), (7.17), (7.21)

p̃(x̃ =−Li

L
, t̃) = p̃v(t̃), p̃(x̃ = 0, t̃) = p̃i(t̃) (7.32)

w̃(x̃ = 0, t̃) = w̃i(t̃), p̃(x̃ = 1, t̃) = p̃e(t̃), (7.33)

w̃(x̃ = 1, t̃) = w̃e(t̃), p̃(x̃ = 1+
Le

L
, t̃) = p̃o(t̃). (7.34)

From now on we shall work with the scaled system and omit the tildes for the sake of
simplicity. The unscaled results can easily be deduced using the scaling defined in this
section. We proceed with the determination of the dynamic relationships between the
actuator and the inlet and outlet pressures.
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7.2.4 System of Coupled Equations in the Laplace Domain

For the estimation of the physical parameters we require explicit expressions of the trans-
fer functions between the actuator and the outlet pressure, as well as the inlet to outlet
pressure. For this purpose, we transform the equations for each system into the Laplace
domain.

Subsystem I

The dynamics in subsystem I are defined by (7.10)-(7.13). Their scaled equivalents are
given by (7.25)-(7.26), (7.29), and (7.32). We take the Laplace transform of (7.25) and
assume zero initial conditions. The resulting equation reads

∂ 2P(x,s)
∂x2 =

ρL2s2

Kt2
s

P(x,s), (7.35)

where P(x,s) is the Laplace transform of the scaled pressure profile p(x, t). This equation
has the general solution

P(x,s) = m1 sinh
(

x
L
ts

√
ρ

K
s
)
+m2 cosh

(
x

L
ts

√
ρ

K
s
)
, (7.36)

in which m1 and m2 are two unknown scalars. We solve the coefficients m1,m2 with the
equation for the gas speed (7.26), which we transform into the Laplace domain (assuming
zero initial conditions), giving

W (x,s) =− ts ps

ρwsLs
∂P(x,s)

∂x
. (7.37)

Substitution of (7.36) into (7.37) then yields

W (x,s) =− ps

ws
√

ρK

{
m1 cosh

(
x

L
ts

√
ρ

K
s
)
+m2 sinh

(
x

L
ts

√
ρ

K
s
)}

. (7.38)

Using the Laplace transformed boundary conditions (7.29) then leads to

m1 = −ws

ps

√
ρKWi(s),

m2 = −ws

ps

√
ρK
{

sinh−1
(
−s

Li

ts

√
ρ

K

)
sR(s)− coth

(
−s

Li

ts

√
ρ

K

)
Wi(s)

}
.

Substitution of these expressions into (7.36) and using the Laplace transformed outputs
(7.32) allows us to determine the dynamical relationship between R(s), We(s) and Pv(s),
Pi(s): [

Pi(s)
Pv(s)

]
=

ws

ps

√
ρK
[

F11(s) F12(s)
F21(s) F22(s)

][
R(s)
Wi(s)

]
,
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in which[
F11(s) F12(s)
F21(s) F22(s)

]
=

 −ssinh−1(−s Li
ts

√
ρ

K ) coth(−s Li
ts

√
ρ

K )

−scoth(−s Li
ts

√
ρ

K ) sinh−1(−s Li
ts

√
ρ

K )

 . (7.39)

The argument in each of the above hyperbolic functions contains the fraction Li
√

ρ

ts
√

K
=

ksLi
√

ρK
L2µφs

. Since this expression evaluates to a small number for typical values of each

parameter (order 10−7 for the parameters used in this chapter), we approximate these hy-
perbolic functions with coth(z) ≈ 1

z and sinh(z) ≈ z where z� 1. The transfer functions
then reduce to the expressions[

F11(s) F12(s)
F21(s) F22(s)

]
=

φsL
Lis

[
s −1
s −1

]
=

fi

s

[
s −1
s −1

]
, (7.40)

where fi is defined as

fi =
φsAL

Vi
=

φsL
Li

. (7.41)

Subsystem II

We recall that the dynamics in subsystem II are defined by the equations (7.14)-(7.17).
Their scaled equivalents are given by (7.27)-(7.28), (7.30), and (7.33). We apply the
Laplace transform to the diffusion equation (7.27), again assuming zero initial conditions,
and write it as (

∂ 2

∂x2 −
s

k/φ

)
P(x,s) = 0,

where P(x,s) is the Laplace transformed scaled pressure. The general solution to this
equation reads

P(x,s) = c1ex
√

sφ

k + c2e−x
√

sφ

k , (7.42)

where c1 and c2 are as-of-yet unknown scalar coefficients. Taking the Laplace transform
of (7.28) and using the previous equation shows that the speed of gas in the porous medium
is given by

W (x,s) =−kc1

√
sφ

k
ex
√

sφ

k + kc2

√
sφ

k
e−x

√
sφ

k . (7.43)

The unknown coefficients c1 and c2 are then determined with the Laplace transformed
boundary conditions (7.30). We then substitute these into (7.42) and use (7.33) to find the
dynamical relationships between Pe(s), Wi(s) and Pi(s), We(s):[

Pe(s)
Wi(s)

]
=

[
S11(s) S12(s)
S21(s) S22(s)

][
Pi(s)
We(s)

]
, (7.44)
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in which[
S11(s) S12(s)
S21(s) S22(s)

]
=

 cosh−1
(√

sφ/k
)

−1√
sφk

tanh
(√

sφ/k
)

√
sφk tanh

(√
sφ/k

)
cosh−1

(√
sφ/k

)
 . (7.45)

Note that the argument in all hyperbolic functions are of O(1) or higher. We therefore do
not approximate these functions as we did for subsystem I.

Subsystem III

The dynamics in subsystem III are defined by the equations (7.18)-(7.21). Their scaled
equivalents are given by (7.25)-(7.26), (7.31), and (7.34). We follow the exact same
derivation as for subsystem I, albeit with the boundary conditions and outputs in (7.31)
and (7.34). The result for subsystem III is that[

Po(s)
We(s)

]
=

[
T11(s) T12(s)
T21(s) T22(s)

][
Pe(s)
Wo(s)

]
(7.46)

in which[
T11(s) T12(s)
T21(s) T22(s)

]
=

 cosh−1
(

Le
ts

√
ρ

K s
)

−ws
ps

√
ρK tanh

(
Le
ts

√
ρ

K s
)

ps
ws
√

ρK tanh
(

Le
ts

√
ρ

K s
)

cosh−1
(

Le
ts

√
ρ

K s
)

 .
Following the derivation for subsystem I we remark that the arguments in all the hyperbolic
functions are small. We approximate these functions around zero and find that we may
write [

T11(s) T12(s)
T21(s) T22(s)

]
=

[
1 − k2

s Kρ

µ2L2
s
fe

s
fe

1

]
,

where fe is defined as

fe =
φsAL

Ve
=

φsL
Le

. (7.47)

The Experiment Set-Up System

At this point we have coupled the different inputs and outputs of the total system. In the
Dynamic Darcy Cell experiment set-up, however, we do not have gas entering the system
at x = 1+ Le

L and thus wo(t) = 0. Consequently, we can remove the transfer functions
T12(s) and T22(s) from the network, see Fig. 7.3. In addition, the transfer functions F21(s),
F22(s) may be removed as they do not influence pi(t), r(t), nor pe(t). Lastly, T11(s) can
be discarded as it does not influence pe(t). The reduced network is depicted in Fig. 7.4.
From this figure, we see the output signal yn f (t) = pe(t) that we shall use to estimate
permeability and porosity. For the two experiment types we consider (see Introduction),
observe that r(t) = uII(t) is the input in the Indirect Method, and uI(t) = pi(t) the input in
the Direct Method.

For the least-squares procedure that we shall introduce in Section 7.3 we require the
transfer function between r(t) and yn f (t) = pe(t) and the transfer function between pi(t)
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Figure 7.4: The network representation of the experimental setup after simplification.

and yn f (t) = pe(t). We shall derive these transfer functions now. We start with the relation-
ship between Pi and Pe, which we shall use to find the time-domain connection between
pe(t) and pi(t). We find from Fig. 7.4 that

Pe(s) =
S11(s)

1−S12(s)T21(s)
Pi(s). (7.48)

This equation shows that the outlet pressure depends on both the inlet pressure Pi as well
as itself through We. This feedback mechanism is clearly seen in Fig. 7.4. Next, the
relationship between R(s) and Pi(s) can be deduced from (7.40), (7.44)-(7.45), and (7.46)
or Fig. 7.4 and reads

Pi(s) = F11(s)
[

1−F12(s)
(

S21(s)+S22(s)T21(s)
S11(s)

1−S12(s)T21(s)

)]−1

R(s). (7.49)

Equations (7.48) and (7.49) reveal the transfer functions between the Laplace-transformed
measurement variables r(t), pi(t), and pe(t). In the next section we show how to calculate
the time-domain response of pi(t) and pe(t) as a function of the actuator signal r(t) using
these transfer functions. These responses are a function of the physical parameters that we
seek to estimate, and will be used as estimation functions in Section 7.3.

7.2.5 Input-Output Dynamics in the Time Domain

Suppose that an input signal u(t) (which in our case can either be pi(t) or r(t)) affects
some noise-free output yn f (θ, t). In the Laplace domain, their relation is

Yn f (θ,s) = G(s,θ)U(s), (7.50)

where G(s,θ) is a function of the physical parameters collected in the vector θ. This vec-
tor represents a family of physical systems, whereas θ = θ0 refers to a particular physical
system characterised by its parameters θ0. We shall refer to the system with θ0 as the
data-generating system, and θ0 contains the physical parameters we need to estimate. For
the identification, we shall use discrete-time input and output data to estimate the param-
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eters using a least-squares method. Consequently, as in Chapter 6, we require a function
that simulates the noise-free response yn f (θ, t) of the system. In this section, we derive
this response for sinusoidal (7.1) and square wave (7.2) actuator signals using Method 1
of Section 6.3.

Suppose we have a closed-form expression of G(s,θ) in (7.50). The time-domain
signal yn f (θ, t) for an input signal of the form, assuming zero initial conditions, reads

u(t) =Cγ sin(ωt). (7.51)

The corresponding noise-free output is then given by (Ljung (1999))

yn f (θ, t) =Cγ |G(iω,θ)|sin(ωt +α), (7.52)

where G(iω,θ) is defined in (7.50) and α = ∠G(iω,θ). For the square wave input signal
(7.2) with amplitude C and cycle frequency ωc the output yn f (θ, t) reads

yn f (θ, t) =
4
π

Cγ

∞

∑
m=1

|G(i[2m−1]ωc,θ)|
2m−1

sin([2m−1]ωct +αm), (7.53)

where αm = ∠G(i[2m−1]ωc,θ).
At this point a general expression of a linear system’s response for sinusoidal and

square wave input signals is defined. What remains is to find a closed-form expression for
the transfer function G(s,θ) that connects the actuator signal r(t) with the inlet and outlet
pressures pi(t) and pe(t). In the next two subsections we derive this transfer function for
pi(t) to pe(t) and r(t) to pe(t).

Direct Method: Inlet Pressure-Outlet Pressure Measurements

The first measurement method uses inlet and outlet pressure measurements and is called
the Direct Method; see Chapter 2. This is one way to collect data in pressure oscillation
experiments, see e.g. (Heller et al. (2002)). The input signal u(t) = uI(t) = pi(t) and
the output is yn f (θ, t) = pe(t), see Fig. 7.4. In the previous section we have derived the
relationship between Pi(s) and Yn f (s) = Pe(s) (c.f. (7.48)), being

Pe(s) =
S11

1−S12T21
Pi(s).

Substitution of S11, S12, and T21 defined in (7.45) and (7.46) results in

Pe(s) = G fe(s,θ)Pi(s),

in which
G fe(s,θ) =

1

cosh
√

φs/k+ f−1
e
√

s(φk)−1 sinh
√

φs/k
. (7.54)

Note that θ = (k,φ)T and that G fe also depends on the degree of freedom fe. We have
now obtained the closed-form expression of the transfer function between pi(t) and pe(t).
Hence, we can easily calculate the output response in the time domain using (7.52). We
remark that the dynamics between pi(t) and pe(t) have also been derived in (Heller et al.
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Figure 7.5: Absolute value of the derivative of the transfer function (7.54) with respect to permeability as a function of the scaled
frequency ω , see (7.55). Observe that for increasing values of fe, the maximum of the curve shifts to higher frequencies and
higher values. A small (large) fe value means that the outlet volume is large (small).

(2002)), but that in that paper the concept of transfer function has not been used; see
Appendix 7.C for a discussion.

For future reference we also calculate the gradient of (7.54) with respect to θ=(k,φ)T :

∂G fe(iω,θ)

∂k
=

fe

{
iφω cosh

(√
iωφ

k

)
+ k [ feφ +1]

√
iωφ

k sinh
(√

iωφ

k

)}
2k2φ

{
fe cosh

(√
iωφ

k

)
+
√

iω(kφ)−1 sinh
(√

iωφ

k

)}2 , (7.55)

∂G fe(iω,θ)

∂φ
= (7.56)

−
fe

{
iω/k cosh

(√
iωφ

k

)
+

[
fe

√
iωφ

k −
√

iω(kφ)−1

]
sinh

(√
iωφ

k

)}
2φ

{
fe cosh

(√
iωφ

k

)
+
√

iω(φk)−1 sinh
(√

iωφ

k

)}2 .

We shall use these expressions in Section 7.4 to find the optimal input signals. The absolute
values of the derivatives are shown in Figs. 7.5 and 7.6 as a function of ω for several values
of fe.

Indirect Method: Actuator-to-Outlet Pressure Measurements

Another possible method uses the actuator and outlet pressure signal for parameter esti-
mation and is equivalent to the Indirect Method introduced in Chapter 2. These signals
have so far not been considered in pressure oscillation literature, but we will see in the re-
mainder of this chapter that this configuration will be beneficial for a series of reasons. In
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Figure 7.6: Absolute value of the derivative of the transfer function (7.54) with respect to porosity as a function of the scaled
frequency ω , see (7.56). For a given ratio fe, the absolute value of ∂G fe (iω,θ)/∂φ is smaller at almost all frequencies than the
absolute value of ∂G fe (iω,θ)/∂k, see Figure 7.5.

this configuration, the input u(t) = uII(t) = r(t) and the output yn f (θ, t) = pe(t), see Fig.
7.4. The relationship between r(t) and pe(t) in the Laplace domain is found by combining
(7.48), (7.49) and using (7.54), i.e.,

Pe(s) =
[
1−F12

(
S21 +S22T21G fe(s,θ)

)]−1 F11(s)G fe(s,θ)R(s)

Substitution of F11, F12 (7.40), S11, . . . ,S22 (7.45), and T21 (7.46), into the previous expres-
sion results in

Pe(s) = L fi, fe(s,θ)G fe(s,θ)R(s),

in which

L fi, fe(s,θ) =

 1
fi
+

1
s

k

√
sφ

k
tanh

√
sφ

k
+

sG fe(s,θ)

fe cosh
√

sφ

k

−1

. (7.57)

This is an interesting result. It shows that the relationship between R(s) and Pe(s) is equal
to the relationship between Pi(s) and Pe(s) multiplied by a complex filter L fi, fe(s,θ). Thus,
we have that Pi(s) = L fi, fe(s)R(s) and Pe(s) = G fe(s)Pi(s). The input-output connection
between R(s) and Pe(s) is thus Pe(s) = L fi, fe(s,θ)G fe(s,θ)R(s) = G fi, fe(s,θ)R(s), where

G fi, fe(s,θ) =

 1
fi
+

1
s

k

√
sφ

k
tanh

√
sφ

k
+

sG fe(s,θ)

fe cosh
√

sφ

k

−1

G fe(s,θ). (7.58)
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Figure 7.7: Absolute value of the derivative of the transfer function (7.58) with respect to permeability as a function of the scaled
frequency ω , see (7.59). Observe that for increasing values of fi and fe, the maximum of the curve increases and shifts to higher
frequencies. A small (large) fe value means that the outlet volume is large (small). A small (large) fi value means that the inlet
volume is large (small).

For future reference, we also calculate the derivatives of (7.58) with respect to k and φ :

∂G fi, fe(iω,θ)

∂k
= (7.59)

kφG fe(iω,θ)

[√
iωφ

k sech2
√

iωφ

k − tanh
√

iωφ

k

]
− i f−1

e φωG2
fe(iω,θ)

× sech
√

iωφ

k tanh
√

iωφ

k +2 f−1
i k2 ∂G fe (iω,θ)

∂k

[√
iωφ

k + fiφ tanh
√

iωφ

k

]
2k2
√

iωφ

k

(
f−1
i + f−1

e G fe(iω,θ)sech
√

iωφ

k +φ

√
k

iωφ
tanh

√
iωφ

k

)2 ,

∂G fi, fe(iω,θ)

∂φ
= (7.60)

−

iφω

(
√

kG fe(iω,θ)sech2
√

iωφ

k −2 f−1
i

√
k ∂G fe (iω,θ)

∂φ
+

tanh
√

iωφ

k√
iωφ

×
[

kG fe(iω,θ)− iω f−1
e G2

fe(iω,θ)sech
√

iωφ

k −2kφ
∂G fe (iω,θ)

∂φ

])
2k3/2

(
f−1
e

√
iωφ

k G fe(iω,θ)sech
√

iωφ

k + f−1
i

[√
iωφ

k + fiφ tanh
√

iωφ

k

])2 .

In these expressions, the transfer function G fe and its derivatives are defined in (7.54)-
(7.56). The absolute values of the above derivatives are shown in Figs. 7.7 and 7.8 as a
function of ω for several values of fe and fi.
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Figure 7.8: Absolute value of the derivative of the transfer function (7.58) with respect to porosity as a function of the scaled
frequency ω , see (7.60).

7.3 Estimation Procedure
In this section we introduce the estimation procedure. Our goal is to estimate the physical
parameters k and φ of the coupled system defined in Section 7.2.2 for the Direct and
Indirect Method.

We first rewrite the expression of the actuator amplitude Cγ (c.f. (7.3)). Since Cγ and
the ratio fi (7.41) are related to the inlet length Li, we write the actuator amplitude as a
function of fi, i.e.

Cγ( fi) = γ
Li

L
= γ

φs

fi
, (7.61)

where we still have that 0 < γ ≤ γm. It is already mentioned that γm ≤ 1 due to the move-
ment limitations of the actuator. However, it is now also clear that γm can not be chosen
large as otherwise the inlet volume is no longer approximately constant due to the actuator
movement, and hence our above derivations no longer hold7. The value γm ≤ 1 should be
determined by the experimenter.

We continue with determining the data collection procedure and then define the least-
squares method.

Indirect Method

Let us for simplicity first explain the identification of the parameters for the Indirect
Method. For the Indirect Method the input signal for the identification is a discrete-time
form uD[n] of the user-chosen actuator signal r(t) and the output signal is a discrete-time
form yD[n] of the outlet pressure pe(t). The identification procedure can be performed
following the same steps as in Section 6.3 (Method 1). In the case of the square wave

7It is important to use the above definition of the actuator amplitude as otherwise unphysical (wrong) results
are obtained when using optimal experiment design.
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excitation signal (7.2), the discrete-time input data uD[n] obtained after the anti-aliasing
filter and the sampling at rate 1/Ts is given by:

uD[n] =
4
π

Cγ( fi)
M(Ts)

∑
m=1

sin([2m−1]ωcnTs)

2m−1
, n = 1, . . . ,N, (7.62)

where we recall that ωc is the cycle frequency of the square wave (7.2). Furthermore, note
that the sum no longer extends to infinity but to the finite integer M(Ts) =

⌊
1
2

(
π

ωcTs
+1
)⌋

:
it determines the highest mode that can be observed in the discrete-time data. Here, b·c
represents the floor function. This integer can be easily deduced from the radial Nyquist
rate π

Ts
.

We suppose as in Section 6.3 that the corresponding discrete-time output data yD[n] is
corrupted with white noise of variance σ2

e . These data are thus given by (6.8) in which
ysim[n;θ] is given by:

ysim[n;θ] =
4
π

Cγ( fi)
M(Ts)

∑
m=1

|G fi, fe(i[2m−1]ωc,θ)|
2m−1

sin([2m−1]ωcnTs +αm), (7.63)

with G fi, fe the transfer function defined in (7.58), and αm = ∠|G fi, fe(i[2m− 1]ωc,θ)|.
Based on N input-output data, the estimate of the parameters can be deduced using the
prediction error criterion (6.9):

θ̂N = argmin
N

1
N

N

∑
n=1

(yD[n]− ysim[n;θ])2 , (7.64)

where ysim[n;θ] is defined in (7.63). Note that in the remaining sections, the number of
data N will be a decision variable of the optimal experiment design problem. Note also
that the case of a sinusoidal excitation signal (7.1) can be similarly treated.

Remark 7.1 The scaling introduced in the previous section should also be applied to the
measured data set ZN . This is explained in Section 6.3.2.

Direct Method

In the Direct Method we will also apply a square wave or sinusoidal excitation signal
r(t) to the system via the actuator. However, we will not use this signal as input for
the identification, but we will use the measured inlet pressure pi(t) instead. The output
signal remains to be the outlet pressure and is measured in the same way as in the Indirect
Method, yielding {yD[n]}N

n=1. This method is also followed by Heller et al. (2002). The
input signal is transformed into a discrete-time signal uD[n] using the same measurement
mechanism (anti-aliasing filter and sampling with Ts time steps). Since the signal pi(t) is
measured (and not directly applied as r(t)), we are not able to retrieve precisely the inlet
pressure (the measurements are indeed corrupted by noise). The signal entering the system
is thus not known exactly, and consequently, we are facing an Errors-In-Variables (EIV)
identification problem that may lead to serious problems in practice (Söderström (2007);
Söderström et al. (2013)). As shown by Mansoori et al. (2015) on another problem, a
way to deal with this EIV problem is to apply a two-stage strategy (Van den Hof and
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Schrama (1993)). First, identify a model L̂ of the relation L fi, fe (c.f. 7.57) between the
actuator signal and the noise-corrupted measurements of pi(t). Second, the actuator signal
r(t) is filtered by that model L̂ to lead to new input data. These new input data converge
asymptotically to the noise-free inlet pressure if a good model structure is chosen for the
identification. While this method alleviates the EIV issue, it will nevertheless increase the
variance of the estimate θ̂N . For the sake of comparison between the Direct and Indirect
Method, we will disregard here this increase of variance and suppose that we can obtain the
noise-free discrete-time inlet pressure using this procedure. This is the same as supposing
that we know precisely the filter L(s) = L fi, fe(s,θ0).

For a square wave signal r(t), the discrete-time signal pi[n] reads

uD[n] =
4
π

Cγ( fi)
M(Ts)

∑
m=1
|L fi, fe(i[2m−1]ωc,θ0)|× (7.65)

sin([2m−1]ωcnTs +∠L fi, fe(i[2m−1]ωc,θ0))

2m−1
.

The output signal can therefore also be written as (7.64) with ysim[n;θ] now defined as

ysim[n;θ] =
4
π

Cγ( fi)
M(Ts)

∑
m=1
|L fi, fe(i[2m−1]ωc,θ0)|

|G fe(i[2m−1]ωc,θ)|
2m−1

× (7.66)

sin([2m+1]ωcnTs +αm),

where αm = ∠G fe(i[2m−1]ωc,θ)+∠L fi, fe(i[2m−1]ωc,θ0). Based on the above expres-
sions, we can use a set of N data to estimate θ̂N using (7.64), but now with the new
definitions of ysim[n;θ]. Note that we now identify the parameter vector in the transfer
function G fe while the considered transfer function was G fi, fe for the Indirect Method.

Remark 7.2 The zero noise assumption on the inlet pressure signal is alleviated in (Heller
et al. (2002)) by averaging points of the signal pi(t) over a three-sample window to reduce
the measurement noise. This downsampling of data leads to information loss since high
frequency dynamics is discarded, and consequently to higher parameter variances.

7.4 Experiment Design using the Direct Method

7.4.1 Problem Statement
In the previous section we have defined the identification experiment and the identification
criterion. Suppose now that our objective is, like in Chapter 6, to obtain estimates of both
parameters with a variance that is smaller than a given threshold, i.e.,

var(k̂N) = eT
1PN,θe1 ≤ ck,

var(φ̂N) = eT
2PN,θe2 ≤ cφ ,

where the covariance matrix will be defined below. We would like to optimise the fre-
quency content and the amplitude of the excitation signal r(t) as well as the DOF fi and
fe in such a way that the above constraints are fulfilled with the shortest possible identifi-
cation length N.
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In this section we address this problem for the Direct Method. For the sake of brevity,
we only derive the solution for the square wave actuator signal (7.2). The case of a si-
nusoidal excitation signal (7.1) can be treated in a similar way. Furthermore, we recall
that, even though the excitation signal r(t) is induced by the actuator, the signals that are
used for the identification are the reconstructed inlet pressure pi(t) and the measured outlet
pressure pe(t). The transfer function that is to be identified is thus G fe(s,θ0).

The spectrum of the sampled inlet pressure signal with amplitude Cγ( fi) and cycle
frequency ωc is given by

ΦuD(ω) =
16
π2

πC2
γ ( fi)

2Ts

M(Ts)

∑
m=1

|L fi, fe(i[2m−1]ωc,θ0)|2
(2m−1)2 ∑

l={−1,1}
δ (ω− l[2m−1]ωc).

(7.67)
Since the filter L fi, fe(s,θ0) is not identified but only G fe(s,θ), L fi, fe for the Direct Method
is not a function of θ anymore, but assumed known and therefore always evaluated at
θ = θ0. Using the same reasoning as in Section 6.4.2, we obtain the following expression
for the inverse of the covariance matrix for the Direct Method is given by

P−1
N,θ[ωc,Cγ( fi), fi, fe] =

16
π2

NC2
γ ( fi)

2σ2
e

M(Ts)

∑
m=1

|L fi, fe(i[2m−1]ωc,θ0)|2
(2m−1)2 × (7.68)

Re
{[

∇θG fe(i[2m−1]ωc,θ)
]
θ=θ0

· [ C.C. ]
}
,

where C.C. stands for complex conjugate.

7.4.2 Optimisation Problem and Its Solution

Due to the amplitude limitation of the actuator, the optimisation problem for the Direct
Method is defined mathematically as

min
ωc,Cγ ( fi), fi, fe

Experiment length N (7.69)

subject to

var(k̂N) = eT
1PN,θ[ωc,Cγ( fi), fi, fe]e1 ≤ ck, (7.70)

var(φ̂N) = eT
2PN,θ[ωc,Cγ( fi), fi, fe]e2 ≤ cφ (7.71)

in which ck and cφ are the scaled user-imposed constraints on respectively the variance of
the estimates k̂N and φ̂N , ei the i-th unit vector, and PN,θ the inverse of matrix (7.68). The
optimisation problem for a sinusoidal actuator signal is defined and solved in Appendix
7.A.

We wish to ensure that the variances of the estimates in θ̂N = (k̂N , φ̂N)
T do not exceed

their respective bounds ck and cφ using the smallest experiment length. The solution is
found as follows:

1. Set the factor γ = γm in the actuator amplitude Cγ( fi).
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2. Define the functions

Nk( fi, fe,ωc) =
1
ck
eT

1P1,θ[ωc,Cγm( fi), fi, fe]e1, (7.72)

Nφ ( fi, fe,ωc) =
1
cφ

eT
2P1,θ[ωc,Cγm( fi), fi, fe]e2, (7.73)

where P1,θ is the inverse of (7.68) for N = 1, and we note that γ has been replaced
by γm.

3. Using the functions from the previous item, define

Nmin( fi, fe) = min
ωc

{
max

[
Nk( fi, fe,ωc), Nφ ( fi, fe,ωc)

]}
, (7.74)

where ωc( fi, fe) is the frequency ωc leading to the minimum in (7.74).

4. The optimal experiment length is given by

Nopt = Nmin( fi,opt , fe,opt), where
{

fi,opt , fe,opt
}
. (7.75)

The solution to the problem is given by the quartet Nopt , fi,opt , fe,opt , and
ωc,min( fi,opt , fe,opt) = argNmin( fi,opt , fe,opt).

In step 1 the coefficient γ in the actuator amplitude Cγ( fi) is set to γ = γm. Equation
(7.68) shows that the parameter variances scale inversely proportional to Cγ( fi). Thus,
selecting the largest possible amplitude of the actuator is a requirement to find the minimal
experiment time. The actuator amplitude is now only a function of fi. In step 2 the
functions Nk and Nφ respectively define the required experiment length to ensure that (i)
var(k̂N) = ck and (ii) var(φ̂N) = cφ . Smaller values than Nk and Nφ violate the respective
constraints in (7.71), whereas larger ones lead to longer experiment lengths than required.
Both constraints are honoured simultaneously, i.e. satisfying situation (i) and (ii), with
the function Nmin( fi, fe) calculated in step 3. It returns the minimal required experiment
length as a function of fi and fe by finding the optimal cycle frequency. The last step then
finds the optimal values of fi and fe such that the global minimum of Nmin( fi, fe), i.e. Nopt ,
is obtained.

Previously it was mentioned that in order to compute the optimal input signal the true
parameter vector θ0 should be used. However, it is this parameter that we want to identify.
Unfortunately, this so-called chicken-and-egg problem is unavoidable in (optimal) Exper-
iment Design. In order to design an optimal signal, some knowledge of the system (in
this case the true parameter vector) is required. Consequently, to solve the optimisation
problem (7.69)-(7.71), we require a prior estimate or an initial estimate θinit to evaluate
the inverse of the covariance matrix (7.68). This substitution inevitably leads to subopti-
mal experiment lengths. However, the case study in Chapter 6 showed that much better
estimates can be obtained using Experiment Design compared to an arbitrary selection of
signals and frequencies, and that in many cases the variance constraints are still honoured.

7.4.3 Numerical Results
In this section we follow the four steps defined in the previous section to numerically
find the solution (7.75) that solves (7.69)-(7.71). To this end, we grid the frequency ωc ∈
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[0,π/Ts] and ratios fi ∈ [0.05,20], and fe ∈ [0.05,20]. The grid resolutions are respectively
∆ωc = 0.05, ∆ fi = ∆ fe = 0.05. The minimum (maximum) values in the interval of fi and
fe correspond to unscaled maximum (minimum) inlet and outlet lengths of respectively
Li = Le = 0.2 meters (Li = Le = 0.5 mm). Values outside these intervals are assumed to
practically infeasible. The physical system is defined through the values in Table 7.1; the
experiment conditions and experiment design values in Table 7.2. We wish to ensure that
the standard deviation of the estimate k̂N and φ̂N are respectively less than or equal to 5%
of their true values k0 and φ0, defined in Table 7.1, using minimal experiment time. We
remark that the optimal experiment lengths found in this section depend strongly on the
choice of noise variance σ2

e and actuator amplitude bound γm. Thus, comparison with
results in the existing literature is only fair under the same experiment conditions.

We first discuss separate parameter estimation results, followed by joint parameter
estimation results.

Separate Parameter Estimation

Separate parameter estimation refers to the situation where either k0 or φ0 is known, and
respectively φ0 and k0 is unknown and needs to be estimated. We thus wish to ensure that
the standard deviation of the estimate k̂N or φ̂N is less than or equal to 5% of their true
value k0 or φ0 in minimal time. Separate estimation is a special case of one in which both
parameters are identified simultaneously (joint estimation), and the optimal experiment
design problem in this case can thus be solved following a very similar procedure as the
one presented in the previous section. This procedure is given in Appendix 7.A for the case
of the sinusoidal excitation signal. The problem and solution for a square wave excitation
signal can also be trivially formulated using that appendix.

The different results for separate estimation of k and φ with sinusoidal or square wave
excitation are summarised in Table 7.3. In order to interpret these results, it makes sense
to start discussing the result corresponding to the sinusoidal excitation and in particular
the function Nmin( fi, fe) defined for the sinusoidal signal in (7.85) in Appendix 7.A. This
function is represented in Fig. 7.13 of that appendix for the case where the parameter k is
identified. We observe the following:

• For any value of fi the required experiment length reduces with increasing fe. In-
spection of Nmin( fi, fe) (c.f. (7.85)) shows that increasing ∂G fe(iωex,θ)/∂θ de-
creases Nmin. From Fig. 7.5 we see that increasing fe results in a larger absolute
value of the derivative. At fe = 20 we find a maximum at ωex ≈ 2.4. Similar be-
haviour is shown for the case θ = φ . The optimal value is fe,opt = 20.

• For any value of fe the required experiment length reduces with decreasing fi. Let us
analyse this result. Note first that fi is only present in the term Cγm( fi)|L fi, fe(iω,θ0)|,
i.e. the amplitude of the inlet pressure pi(t). Obviously, by decreasing fi, we in-
crease the inlet volume and thus also the maximal amplitude of the actuator Cγm( fi)
(see remark below (7.3) and (7.61)), which in turn decreases the required experiment
time (c.f. (7.85)). However, the inlet amplitude attenuation due to the filter |L fi, fe |
decreases with decreasing fi, yet increases with frequency. It is easy to show that

∀ fi, fe : max
ω

Cγm( fi)|L fi, fe(iω,θ0)|= γmφs.

Thus, the maximal amplitude of the inlet pressure is equal to γmφs and independent
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Quantity Scaled Value Real Value

Sampling time T̃s = 0.021 Ts = 0.01 s
Sensor noise variance σ̃2

e = 0.05 σ2
e = 1.25×109 Pa2

Permeability variance constraint c̃k = 2.5×10−3 ck = 2.5×10−3k2
0 m4

Porosity variance constraint c̃φ = 2.5×10−3 cφ = 2.5×10−3φ 2
0

Actuator amplitude constraint γm = 0.1 γm = 0.1
Table 7.2: The experiment is designed using the above quantities. The scaled system is defined through the choices L = 0.05,
ks = k0, φs = φ0. These scalars define the scaled system in Section 7.2.3.

of fi and fe. However, for small fi this asymptotic value is reached quicker at lower
frequencies than for larger fi, see Fig. 7.10. It is also reached quicker for larger
fe. This explains why one should opt for taking fi,opt = 0.1 for any fe. It is also
at low frequencies where the derivative of G fe(iω,θ) with respect to k is large, as
explained in the previous item.

• The optimal ratios are fi,opt = 0.1 and fe,opt = 20. The corresponding optimal ex-
periment length Nopt = 2.86×105 at optimal frequency ωopt = 2.45, see Table 7.3.
The value of fe,opt corresponds with a choice made in literature (Heller et al. (2002)):
minimising the outlet volume. The optimal values occur at the boundary of the con-
sidered intervals of fi and fe. The aim in practice is thus to maximise the inlet
volume and minimise the outlet volume.

• Quantitatively the same results and analysis holds for the case where θ = φ . The
experiment lengths in Table 7.3 show that porosity is more difficult to estimate than
permeability, as ∂G fe/∂φ is smaller than ∂G fe/∂k for all values of fe depicted in
Fig. 7.6.

• Square wave actuator signals result in shorter experiment lengths than sinusoidal
ones. This reason for that is explained in Appendix 7.D.

Joint Parameter Estimation

We follow the procedure outlined at the start of this section, using the same experiment
conditions, to analyse the joint parameter estimation experiment design solutions. The
optimisation problem is given by (7.69)-(7.71). The results are also given in Table 7.3 for
the case of the sinusoidal and square wave signals. The logarithm of the Nmin( fi, fe) (c.f.
7.74)) is shown in Fig. 7.9 as a function of fi and fe. Starting once again the discussion
with the sinusoidal signal, we observe the following:

• The optimal input signal for joint estimation, defined through (7.75), is found for
ωopt = ωex,min( fi,opt , fe,opt) = 2.35 at optimal ratios fi,opt = 0.1 and fe,opt = 1.0,
see Table 7.3 and Fig. 7.9. The minimal experiment length for this combination
is Nopt = 4.47×107, and corresponds to an unscaled experiment time of about five
days (Ts = 0.01 seconds). The experiment lengths for a square wave actuator signal
are also tabulated. Note that Nopt is smaller for the square wave signal than when
using a sinusoidal actuator signal, as expected from the result in Appendix 7.D.

• For any value of fe it is clear from the figure that by lowering fi shorter experiment
times are obtained. This effect has already been explained in Section 7.4.3.
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Direct
Method k φ {k,φ}

Sine SW Sine SW Sine SW

Nopt 2.86 ·105 1.66 ·105 3.46 ·105 2.0 ·105 4.47 ·107 2.51 ·107

ωopt 2.45 2.3 2.45 2.3 2.35 2.1
fi,opt 0.1 0.1 0.1 0.1 0.1 0.1
fe,opt 20 20 20 20 1.0 1.0

Table 7.3: Optimal experiment lengths, scaled frequencies, and optimal ratios fi,opt , fe,opt of input using the Direct Method
for sinusoidal (Sine) and square wave (SW) actuator signal. Three cases are shown: estimation of only k or φ , and the joint
estimation of the parameters {k,φ}.
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Figure 7.9: The natural logarithm of the minimal experiment length Nmin( fi, fe) (7.75) for the simultaneous estimation of k and φ

using a sinusoidal excitation signal, required to honour their respective variance constraint and the amplitude constraint γm = 0.1,
is plotted against the ratios fi and fe. In sharp contrast to single parameter estimation experiments, the optimal ratio fe,opt = 1.0.
The optimal inlet ratio fi,opt = 0.1.
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Figure 7.10: The inlet pressure amplitude Cγm ( fi)|L fi , fe (iω,θ0)| as a function of frequency ω for various values of fi. For
each ratio fi the inlet amplitude is shown for various values of fe in the same color. For the same fi value, smaller values of
fe correspond to smaller amplitudes. Observe that a smaller fi leads to a higher amplitude at any given frequency, although all
ratios of fi lead to the same asymptotic value of γmφs = 0.02. Notice that fe only affects the amplitude at low frequencies and
after ω = 7.0 all ratios fe yield the same amplitude at their respective value of fi.

• In sharp contrast to the single parameter experiments (see Table 7.3), we observe
that now, instead, fe should be chosen equal to fe = fe,opt = 1.0 as opposed to
fe� 1. The experiment length N is affected by fe through the gradient of G fe , see
(7.68). In Figs. 7.5 and 7.6 we see that both components of this gradient increase
with increasing fe, which in principle should shorten N. This is not the result we
obtain from the optimal experiment design results.

In order to understand the curiosity mentioned in the last item, i.e. why the optimal
ratio is now fe,opt = 1.0 instead of fe = 20, we need to analyse the physical system further.
To this end, we require the following theorem.

Theorem 7.1 The parameters k and φ are not identifiable in the limit fe→ ∞.

Proof: The general condition for identifiability is given by (Ljung (1999))

G(iω,θ1) = G(iω,θ2)∀ω ⇒ θ1 = θ2. (7.76)

Taking the limit fe→ ∞ of the frequency response G fe(iω,θ) in (7.54) yields

lim
fe→∞

G fe(iω,θ) =
1

cosh
√

iωφ/k
. (7.77)

Suppose that θ1 = (k1,φ1)
T and θ2 = (κk1,κφ1)

T , where κ ∈ R. Substitution in (7.77)
then shows that G∞(iω,θ1) = G∞(iω,θ2) for any frequency ω , whereas θ1 6= θ2. This
concludes the proof. 2

The proof shows that in the limit of fe→∞ the transfer function G fe contains the quotient
φ

k . As a consequence, infinitely many equal quotients exist by multiplying k and φ with
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the same scalar κ . This problem does not exist for the estimation of only one parameter,
as the other one is known. How is this effect then reflected in (7.75)?

Theorem 7.2 The components of the gradient ∇θG fe(iω,θ) are linearly dependent for all
frequencies in the limit fe→ ∞. Consequently, the inverse of the covariance matrix P−1

N,θ
is rank deficient for any input spectrum ΦuD(ω).

Proof: The derivative of the transfer function (7.54) with respect to the parameters k
and φ have been calculated previously, see (7.55) and (7.56). Dividing the numerator and
denominator of each derivative by f 2

e and taking the limit fe→ ∞ shows that

∂G fe(iω,θ)

∂k
=− k

φ

∂G fe(iω,θ)

∂φ
.

This shows that the elements in ∇θG fe(iω,θ) are linearly dependent at all frequencies.
Consequently, for any input spectrum ΦuD the inverse of the covariance matrix for the

Direct Method in this limit, i.e.

P−1
N,θ =

NTs

2πσ2
e

(
k2/φ 2 −k/φ

−k/φ 1

)∫
π/Ts

−π/Ts

∣∣∣∣∂G fe(iω,θ)

∂φ

∣∣∣∣2
θ=θ0

|L fi, fe(iω,θ0)|2ΦuD(ω)dω

is rank deficient for all ω . Indeed,we find that det(P−1
N,θ) = 0. It is clear that the variances

of the estimates k̂N and φ̂N approach infinity when increasing fe towards the limit fe→∞.
2

Discussion

Theorem 7.2 shows that when identifying the two parameters jointly, high values of fe
should be avoided. We see now that there are two competing mechanisms. One the one
hand, the sensitivity of the physical system with respect to the parameters increases with
increasing fe, which is beneficial to reduce the individual variances of the parameters (and
thus shorten the required experiment time). On the other hand, joint estimation of the
two parameters becomes more difficult as the derivatives become more and more similar
for large fe. Hence, the parameters become increasingly correlated for increasing fe for
any excitation frequency (or, in fact, any input spectrum), making the covariance matrix
singular in the limit fe → ∞. This effect already plays a dominant role at fe ≈ 20, as
can be observed from Figs. 7.5 and 7.6. Consequently, a trade-off between these two
mechanisms has to be made. Optimal experiment design shows that the best trade-off is
reached by choosing fe = 1.0 and using an optimal frequency of ωc,opt = 2.1. Due to this
trade-off, the minimal experiment time increases to N = 2.51× 107 (approximately five
days), which is two orders of magnitude larger than the experiment lengths obtained for
separate parameter estimation.
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7.5 Experiment Design using the Indirect Method

7.5.1 Problem Statement
In this section we consider experiment design for the Indirect Method. We recall that we
estimate the parameters in the transfer function G fi, fe(s,θ0) = L fi, fe(s,θ0)G fe(s,θ0). The
input in this case is the actuator signal r(t) and the output is the outlet pressure pe(t),
see Fig. 7.4. We use the same core sample values and scaling as in the previous section,
see Tables 7.1 and 7.2. As in Section 7.4, we only derive the results for the square wave
signal. The results for the sinusoidal excitation can be treated in a very similar way. The
optimisation problem in the case of a single parameter estimation is delegated to Appendix
7.B.

The power spectrum of the square wave actuator signal, corresponding to the input
signal (7.62), is defined by

ΦuD(ω) =
16
π2

πC2
γ ( fi)

2Ts

M(Ts)

∑
m=1

1
(2m−1)2 ∑

l={−1,1}
δ (ω− l[2m−1]ωc). (7.78)

The corresponding inverse covariance matrix reads

P−1
N,θ[ωc,Cγ( fi), fi, fe] =

16
π2

NC2
γ ( fi)

2σ2
e
× (7.79)

M(Ts)

∑
m=1

1
(2m−1)2 Re

{[
∇θG fi, fe(i[2m−1]ωc,θ)

]
θ=θ0

· [ C.C. ]
}
,

where C.C. stands for complex conjugate and the transfer function G fi, fe is given by (7.58).
As in the previous section, we search for the minimal identification length N that nonethe-
less fulfils variance constraints on the estimates, and respects the actuator amplitude limi-
tations, by finding optimal values for γ , ωc, fi, and fe.

7.5.2 Optimisation Problem and Its Solution
The optimisation problem in the Indirect Method is given by

min
ωc, fi, fe,Cγ ( fi)

Experiment length N (7.80)

subject to

var(k̂N) = eT
1PN,θ[ωc,Cγ( fi), fi, fe]e1 ≤ ck, (7.81)

var(φ̂N) = eT
2PN,θ[ωc,Cγ( fi), fi, fe]e2 ≤ cφ , (7.82)

in which the inverse of the covariance matrix for two parameters is given by (7.79) for the
transfer function G fi, fe (7.58). Notice that the optimisation problem is similar to (7.69)-
(7.71), although we now consider the transfer function is G fi, fe and the amplitude of the
input is different.

The solution is found by following the same reasoning as in Section 7.4.2. We follow
the steps 1-4 in Section 7.4.2, where we instead use (7.79) for P−1

N,θ.



7.5 Experiment Design using the Indirect Method 133

7.5.3 Numerical Results
Let us now investigate the experiment design solutions, where we use the same physical
set-up, experiment parameters, and gridding method as defined in Section 7.4.3. For con-
venience we recall that we wish to ensure that the variance of the estimate k̂N and φ̂N are
respectively less than or equal to 5% of their true values k0 and φ0, defined in Table 7.1. All
parameters defining the porous medium are also mentioned in this table. Other parameters
are defined in Table 7.2. We will first consider separate parameter estimation experiment
design results, followed by the joint parameter results.

Separate parameter estimation

In Appendix 7.B the optimisation problem (7.83)-(7.84) and solution are given for the
separate parameter estimation problem in case of a sinusoidal signal. The case of a square
wave input signal is trivially formulated and solved with the use of (7.79).

The optimal experiment times are tabulated in Table 7.4. The function Nmin( fi, fe) (c.f.
(7.88)) plotted against fi and fe is qualitatively similar to the Direct Method case (see Fig.
7.13) for both θ = k and θ = φ . Furthermore, we observe the following:

• For both θ = k and θ = φ the optimal ratios are fi,opt = 0.1 and fe,opt = 20. Ap-
parently, it is best practice to maximise the inlet volume and minimise the outlet
volume.

• From (7.88) we find that fe influences the gradient ∇θG fi, fe(iωex,θ). The larger the
gradient, the smaller Nmin( fi, fe) for any value of fi. Figures 7.7 and 7.8 show that
increasing fe increases the gradient of both k and φ . This explains why one should
opt for maximising fe.

• The same figures also show that decreasing fi decreases the gradient, which in-
creases the required experiment length. Yet, we see from Table 7.4 that fi should
be minimised. The actuator amplitude Cγm( fi) scales inversely proportional to fi,
and so minimising fi increases the amplitude and reduces the required experiment
length. The two effects are thus competing, but the latter one is dominant. Hence,
fi should me minimised.

• The optimal excitation frequencies lie close to those values where the gradients are
maximal, see Figs. 7.7 and 7.8.

Joint parameter estimation

The solution for the joint estimation of permeability and porosity is also presented in Table
7.4 and is discussed now. The numerical results are obtained through the same procedure
as in Section 7.4, but using (7.79) to define PN,θ. We discuss here directly the case of the
square wave signal:

• The function Nmin( fi, fe) attains its minimum for fi,opt = 0.6 and fe,opt = 6.1, giv-
ing Nopt = Nmin(0.6,6.1) = 1.8× 106 (5 hours) and an optimal cycle frequency of
ωc,opt = 1.0, see Fig. 7.11.

• These optimal values differ significantly from the separate estimation results, see
Table 7.4. From Figs. 7.7 and 7.8 we see that for fi = 0.1, fe = 20 the gradients of k
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Indirect
Method k φ {k,φ}

Sine SW Sine SW Sine SW

Nopt 3.00×105 1.74×105 3.6×105 2.1×105 3.3×106 1.8×106

ωopt 2.55 2.4 2.5 2.4 1.2 1.0
fi,opt 0.1 0.1 0.1 0.1 0.6 0.6
fe,opt 20 20 20 20 6.4 6.1

Table 7.4: Scaled optimal experiment lengths, frequencies, and ratios fi, fe of input for the Indirect Method. The scaled system
is defined through Table 7.1. These scalars define the scaled system in Section 7.2.3. For simultaneous estimation in case of a SW
actuator signal, note that fi,opt and fe,opt translate into an inlet length of Li = L/3≈ 1.7 cm and an outlet length of Le = L/30≈ 1.7
mm, both of which are feasible in practice.
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Figure 7.11: The natural logarithm of the minimal experiment length Nmin( fi, fe) as a function of the ratios fi and fe. Note that
the shortest experiment length is obtained for fi,opt = 0.6, fe,opt = 6.1.
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and φ are very similar, resulting in high correlation between the two parameters in a
joint estimation. This increases the required experiment length. However, we have
here no identifiability problem as for the Direct Method.

• In Section 7.5.3 it is explained that the actuator amplitude is maximised by min-
imising fi and therefore for those cases fi,opt = 0.1. By virtue of the previous item,
a trade-off between parameter correlation and amplitude maximisation has to be
made. We see from Figs. 7.7 and 7.8 that the gradients are large and not identical at
the optimal ratios of fi and fe, so the increase in fi (reducing the amplitude and thus
increasing the required experiment length) is compensated by larger gradients.

Discussion

We now discuss some differences between the Indirect and Direct Method results.
Let us first discuss the case of separate estimation. For this specific case, observe

from Tables 7.3 and 7.4 that permeability or porosity is estimated with slightly shorter
experiment times when using the Direct Method. However, we point out that we have
assumed the input signal pi(t) is noise free, corresponding to the assumption that we know
the filter L fi, fe(iω,θ0). In reality, this is not the case, and will increase the variance of the
estimates. Probably the Indirect Method is then preferred.

Let us now go to the more interesting case of joint estimation of the two parameters.
Experiment Design has revealed that the optimal experiment length strongly depends on
the selected input signals. Indeed, the experiment time for the Indirect Method is a factor
fourteen smaller for joint estimation compared to the Direct Method. We have seen for
the latter method that fe had to be reduced due to singularity issues at fe � 1. This
back-off reduces both the inlet pressure amplitude and the gradients, hereby increasing
the required experiment length enormously compared to the separate estimations. For
the Indirect Method, the combination ( fi = 0.1, fe = 20) corresponds to highly correlated
parameters and thus a long experiment time. However, we found that for fi,opt = 0.6 and
fe,opt = 6.1 the gradients can be increased significantly even though the actuator amplitude
is less. The difference in the required experiment length for joint estimation compared to
the separate estimations is therefore less drastic than in the Direct Method.

7.6 Simulation of the Experiment Set-Up: Estimation Re-
sults

In this last section we apply the optimal square wave input signal for the Indirect Method
detailed in Section 7.5, Table 7.4, to the core sample. All parameters are defined in Tables
7.1 and 7.2. In the absence of a physical set-up, we instead generate numerical experiment
data ZN = {uD[n],yD[n]}N

n=1 by applying our optimal input signal uD (using the values in
Table 7.4 and (7.62)) and generating noise-corrupted output sequences yD using (7.63).
We then follow the estimation procedure for the Indirect Method detailed in Section 7.3.

We consider the simultaneous estimation of permeability and porosity from a single
experiment. We performed five thousand Monte Carlo simulations yielding the estimated
pairs

{
k̂N , φ̂N

}
. The optimal square wave signal has a cycle frequency of ωc,opt = 1.0, the

experiment length is Nopt = 1.8×106, and the optimal ratio fi,opt = 0.6, fe,opt = 6.1, see
Section 7.5. A scatter plot of the estimates is shown in Fig. 7.12. The mean of all points is
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Figure 7.12: Scatter plot of the couples
{

k̂N , φ̂N
}

resulting from 5× 103 experiments. The variance of permeability is σ 2
k =

9.9183×10−5 and of porosity σ 2
φ
= 5.1211×10−5. The black cross indicates the coordinate of the mean values of permeability

and porosity, which were < k̂N >= 1.0 and < φ̂N >= 1.0 and hence respectively equal to k0 = 1.0 and φ0 = 1.0.

(1.0,1.0), corresponding to the true scaled parameter values k0 = φ0 = 1.0. The variance
of the estimates k̂N and φ̂N are respectively σ2

k = 2.49× 10−3 and σ2
φ
= 2.5× 10−3. The

variance constraints defined in Table 7.2 are clearly respected.
In conclusion, we see the optimal input signal and set-up conditions indeed generate

estimates that respect the variance constraints that we set prior to the experiment.

Remark 7.3 In the experiment design sections we have made use of the fact that we know
θ0 in order to find the optimal input spectra, since the inverse of the covariance matrix
depends on θ0. Unfortunately, this dependence is universal in experiment design: no
optimal experiment can be designed without prior knowledge of the system. Although we
here chose to use the true parameter values, we have shown in Chapter 6 that by replacing
the true vector by an initial guess θinit nonetheless delivers better results than arbitrary
input signal or degrees-of-freedom in the set-up.

Remark 7.4 Our results are based on the values k0 and φ0 shown in Table 7.1. Different
values will lead to different optimal frequencies and optimal ratios fi,opt and fe,opt . How-
ever, the Indirect Method will remain a better estimation method than the Direct Method,
regardless of the actual values of permeability and porosity. Indeed, Theorem 7.1 is inde-
pendent of the scaling or the values of k and φ .

7.7 Summary
In this chapter we have introduced a novel estimation method that allows finding the
minimal experiment time that is required to estimate permeability and porosity under
user-specified parameter variance constraints and actuator limits. We have illustrated our
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methodology on the Dynamic Darcy Cell. We have approached the problem by introduc-
ing a classical least-squares estimation procedure, from which we derived an expression
for the covariance matrix of the estimates. This expression was used to compute the opti-
mal input signal (either a sinusoid or square wave) and optimal experiment set-up degrees
of freedom, being the ratios of the pore volume to inlet volume, fi, and pore volume to out-
let volume, fe using Experiment Design techniques. We considered sinusoidal and square
wave actuator signals and two measurement types: actuator position/ outlet pressure mea-
surements (the Indirect Method) and inlet pressure/outlet pressure measurements (Direct
Method).

We have proven that square wave signals deliver shorter experiment lengths than sinu-
soidal ones under the same variance constraints and actuator limits.

The experiment design results for the Direct Method were as follows. For the joint
estimation of permeability and porosity, we found that the optimal ratios fe,opt = 1.0 and
fi,opt = 0.1, in contrast to separate parameter experiments for which fe,opt = 20. This cu-
riosity originates from a trade-off between variance reduction of permeability and porosity
(which is obtained for high fe values, and reduces the variance of each separate parame-
ter) and their correlation (which increases with increasing fe, and drives the inverse of the
covariance matrix to singularity). As a result, the minimum experiment time in this case
is two orders of magnitude larger than for the separate parameter experiments.

We also investigated the Indirect Method, novel in this chapter. We found it superior to
the Direct Method for joint parameter estimation: experiment lengths of a factor fourteen
less are found. This difference originates mainly from the fact that, compared to the Direct
Method, the sensitivity of the system with respect to changes in permeability and porosity
for the Indirect Method is large over a broader range of fi and fe values.

Our analytical results are verified by simulating the Dynamic Darcy cell numerically,
and we found excellent agreement between the numerical results and theoretical predic-
tions.

Experiment design, and the introduction of the novel estimation method, clearly have
enormous potential in practice. This theoretical work is therefore also an invitation to
experimentalists to apply our techniques in practice. Future research could be focussed on
extending the methodology to large-scale identification problems in e.g. oil reservoirs and
aquifers.

7.A Single Parameter Experiment Design for the Direct
Method

In this appendix we consider the estimation of either permeability of porosity using a
sinusoidal actuator signal. The true parameter vector is denoted by θ0 and is thus either
equal to k0 or φ0. To find the minimal experiment time that honours the variance constraint
on one of the estimates given the amplitude constraints on the inlet pressure signal reads:

min
ωex,Cγ ( fi), fi, fe

Experiment length N (7.83)
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Figure 7.13: The logarithm of Nmin( fi, fe) as a function of fi and fe for θ = k. The optimal ratios are fi,opt = 0.1 and fe,opt = 20.

subject to

var(θ̂N) = PN,θ [ωex,Cγ( fi), fi, fe]≤ cθ , (7.84)

where cθ is either ck (constraint value for permeability) or cφ (constraint value for poros-
ity), G fe is given by (7.54), and the inverse of the covariance matrix is given by the scalar

P−1
N,θ =

NC2
γ ( fi)

2σ2
e

∣∣L fi, fe(iωex,θ)
∣∣2 ∣∣∣∣∂G fe(iωex,θ)

∂θ

∣∣∣∣2
θ=θ0

.

From this expression it is clear that a requirement to find the optimal solution is that the
condition var(θ̂N)≡ Pθ = cθ is met, and that furthermore that we should select γ = γm, see
previous sections for motivation. The solution to (7.83)-(7.84) for given ratios of ( fi, fe)
is then trivially found to be

Nmin( fi, fe) =
2σ2

e

cθ C2
γm( fi)

min
ωex

[∣∣L fi, fe(iωex,θ0)
∣∣−2
∣∣∣∣∂G fe(iωex,θ)

∂θ

∣∣∣∣−2

θ=θ0

]
, (7.85)

where the optimal excitation frequency ωex,min( fi, fe) is a function of fi and fe and is the
frequency at which the minimum in (7.85) is obtained. The shortest possible experiment
length is then found to be:

Nopt = Nmin( fi,opt , fe,opt), ( fi,opt , fe,opt) = argmin
fi, fe

Nmin( fi, fe). (7.86)

The logarithm of the function Nmin( fi, fe) (c.f. (7.85)) is plotted for θ = k in Fig. 7.13
as a function of fi and fe. The result for porosity is qualitatively the same. All optimal
values are reported in Table 7.3. All other parameters are defined in Tables 7.1 and 7.2.
The constraint value is respectively cθ = ck and cθ = cφ for these cases, see Table 7.2.
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7.B Single Parameter Experiment Design for the Indirect
Method

In this appendix we follow the exact same procedure as in Appendix 7.A, but now for
actuator to outlet measurements. The actuator limit is given by γm = 0.1. All parameters
are defined in Tables 7.1 and 7.2. The optimisation problem for the Indirect Method is
given by (7.83)-(7.84), where Pθ should be replaced with

P−1
N,θ [ωc,Cγ( fi), fi, fe] =

NC2
γ ( fi)

2σ2
e

∣∣∣∣∂G fi, fe(iωex,θ)

∂θ

∣∣∣∣2
θ=θ0

. (7.87)

Following the same arguments as in the previous appendix we find that the minimal exper-
iment time for a given set of { fi, fe} is given by

Nmin( fi, fe) =
2σ2

e

cθC2
γm( fi)

min
ωex

∣∣∣∣∂G fi, fe(iωex)

∂θ

∣∣∣∣−2

θ=θ0

, (7.88)

where G fi, fe is defined in (7.58). The optimal experiment length Nopt is then found as in
the previous appendix.

7.C Dynamical Relationship between the Inlet and Outlet
Pressure

An alternative way to find the dynamical relationship between the inlet pressure pi(t)
and outlet pressure pe(t) has been considered in (Heller et al. (2002)). In that paper, the
expression for the system output when applying an input signal u(t) = C cos(ωt) was
found to be

yn f (t) = p(x = 1, t) =C
Ψ1(ω)cos(ωt)+Ψ2(ω)sin(ωt)

Ψ2
1(ω)+Ψ2

2(ω)
(7.89)

in which (after some additional algebraic manipulation to their expressions)

Ψ1(ω) = cosh

(√
ωφ

2k

)
cos

(√
ωφ

2k

)
+

√
ωφ

2k
f ×[

sinh

(√
ωφ

2k

)
cos

(√
ωφ

2k

)
− cosh

(√
ωφ

2k

)
sin

(√
ωφ

2k

)]
,

Ψ2(ω) = sinh

(√
ωφ

2k

)
sin

(√
ωφ

2k

)
+

√
ωφ

2k
f ×[

sinh

(√
ωφ

2k

)
cos

(√
ωφ

2k

)
+ cosh

(√
ωφ

2k

)
sin

(√
ωφ

2k

)]
.

It is clear that (7.52) is more compact and easier to use, especially for more complex
input signals. A simple time plot of these two signals shows that the expressions (7.52)
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and (7.89) are indeed equivalent for u(t) =C cos(ωt) (not shown here). Note that for this
comparison, sin(·) in (7.52) needs to be replaced by cos(·). In fact, one can show with
trigonometric identities that their amplitude ratio between the outlet and inlet pressure

R =
2√

Ψ2
1 +Ψ2

2

is equal to |G fe | in (7.54), and that their phase shift Θ between outlet and inlet pressure

Θ = arctan
−Ψ2

Ψ1

is equal to α = ∠G fe .
Importantly, regardless of the different notations, the way of deriving the expression

of the ratio R and phase shift Θ in (Heller et al. (2002)) is more involved than when
considering the coupled subsystems in Section 7.2. This becomes especially true when
considering the full inlet to outlet dynamics, i.e. subsystems I until III.

7.D Square Wave versus Sinusoid

In this appendix we prove that a square wave input signal can deliver shorter experiment
times under the same variance constraints compared to a sinusoidal input signal, and give
a lower bound on how much shorter the experiment time can be. This result is valid for
the estimation of one or two parameters simultaneously. Indeed, one can not identify more
than two parameters with one single sinusoid. The result derived here does not only per-
tain to the Direct and Indirect Methods, but holds in general. The dimension of θ must
however be equal to or less than two.

We introduce some notations. The spectrum for a sinusoidal input signal with fre-
quency ωex and amplitude C reads

Φu(ω) =
πC2

2Ts
∑

l={−1,1}
δ (ω− lωex), (7.90)

in which Ts is the sample time. The spectrum for a square wave with cycle frequency ωc
and amplitude C reads

Φu(ω) =
8C2

πTs

M(Ts)

∑
m=1

1
(2m−1)2 ∑

l={−1,1}
δ (ω− l[2m−1]ωc), (7.91)

where M(Ts) =
⌊

1
2

(
π

ωcTs
+1
)⌋

.
Lastly, for an input u(t) that is connected to output y(t) through a transfer function

GΞ(iω,θ0), where Ξ contains all degrees-of-freedom of the set-up, assuming white mea-
surement noise and no feedback, the inverse of the covariance matrix of the estimates θ̂N
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is given by

P−1[Φu(ω)] =
NTs

2πσ2
e

∫
π/Ts

−π/Ts

[∇θGΞ(iω,θ)]θ=θ0 [∇
∗
θGΞ(iω,θ)]θ=θ0Φu(ω)dω, (7.92)

where σ2
e is the variance of the white noise, N the experiment length, and the asterisk

denotes complex conjugation. We are now ready to prove the following lemma.

Lemma 7.1 Let N1, ωex = ωopt , Ξopt , C be respectively the minimal experiment time, op-
timal excitation frequency, optimal set of degrees-of-freedom in the set-up, and amplitude
C of the sinusoid u(t) =C sin(ωext) that solve the optimisation problem

min
ωex,Ξ

N (7.93)

subject to
∀θi ∈ θ : var(θ̂i,N)≤ cθi , (7.94)

where cθ ,i is the variance constraint for estimate θ̂i,N . Then, using a square wave signal
with cycle frequency ωc = ωopt and amplitude C, the minimal experiment time NSW that
fulfil constraint (7.94) can be guaranteed to be at least a factor π2/16 times smaller than
N1.

Proof: The expression of the covariance matrix (7.92) for a single sinusoid with spectrum
(7.90) using the optimal parameters N = N1, ωex = ωopt , Ξ = Ξopt , and amplitude C reads

P−1
1,opt =

N1C2

2σ2
e

Re
{[

∇θGΞopt (iωopt ,θ)
]
θ=θ0

[
∇θGΞopt (iωopt ,θ)

]∗
θ=θ0

}
. (7.95)

By definition this covariance matrix honours the variance constraints. The substitution of
(7.91), ωc = ωopt , and N = NSW into the covariance matrix (7.92) results in

P−1
SW =

16
π2

NSWC2

2σ2
e

M(Ts)

∑
m=1

1
(2m−1)2 Re

{[
∇θGΞopt (i[2m−1]ωopt ,θ)

]
θ=θ0
×

[
∇θGΞopt (i[2m−1]ωopt ,θ)

]∗
θ=θ0

}
. (7.96)

Separating the expression P−1
N,θ,SW into the sum of modes m = 1 and m > 1 we find

P−1
SW =

16
π2

NSWC2

2σ2
e

Re
{[

∇θGΞopt (iωopt ,θ)
]
θ=θ0

[
∇θGΞopt (iωopt ,θ)

]∗
θ=θ0

}
+extra positive definite terms.

Clearly, by choosing NSW = π2

16 N1 < N1 and using (7.95), (7.96), the above equation may
be rewritten as

P−1
SW = P−1

1,opt + extra positive definite terms. (7.97)

What remains to show is that the variance(s) of θ̂N,i has (have) not increased. To this end,
using Schur’s complement, we rewrite the constraints in (7.94) for covariance matrix P−1

SW
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as:

∀θi ∈ θ :
(

cθi ei

eT
i P−1

SW

)
� 0.

Denote Ω� 0 the extra positive definite terms in (7.97). For the constraint on θ̂N,i, we find
by substitution of (7.97) that we require

∀θi ∈ θ :
(

cθi ei

eT
i P−1

1,opt +Ω

)
=

(
cθi ei

eT
i P−1

1,opt

)
+

(
0 0
0 Ω

)
� 0.

The first terms on the r.h.s. of this equation is positive definite by virtue of the fact that
the constraint is satisfied for P−1

1,opt . Multiplying this equation on the left by an arbitrary
vector [ξ,θ]T and [ξ,θ] on the right, with ξ a scalar entry, shows that we require that
θT Ωθ > 0 for all θ. This condition is clearly honoured since Ω� 0. Hence, by selecting
NSW = π2/16N1 < N1 we can honour the constraints with a shorter experiment time when
using a square wave signal. 2
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LCED for Systems with Time-Domain
Signal Amplitude Constraints

”A theory with mathematical beauty is more likely to be correct than an ugly
one that fits some experimental data.” - Paul M.J. Dirac

8.1 Introduction
In many practical problems, the amplitude of the input signal and/or of the output signal
in the time-domain should not exceed a certain value during the identification experiment.
An example is given in Chapter 7 where the amplitude of the input/excitation signal is
constrained to be smaller than a maximal value. These types of constraints are not treated
in neither the classical experiment design contributions nor the least-costly framework.
Indeed, in these works, the power of the input and/or output signals are constrained and/or
minimised. The reason of considering the power instead of the time-domain amplitude is
that it yields convex optimisation problems (see e.g. Chapter 3).1

In this chapter, we will consider optimal experiment design combining constraints of the
type of Section 3.2.3 (i.e. constraints on the minimal accuracy the model must have) and
time-domain amplitude constraints. The optimal experiment design problem can then be
formulated as in (Ebadat et al. (2014b,a)), where the experiment length N is minimised
subject to both the time-domain amplitude and an accuracy constraint. Note that this is
also the formulation chosen in Chapter 7. However, in Chapter 7 we restricted attention to
the design of a single sinusoid or a square wave (with one decision variable for the input
spectrum). Here, we will design the amplitudes and phases of a multi-sine containing fixed
frequencies (see the formula below (3.6)). This is also the main difference with the very
interesting contribution of Ebadat et al. (2014a) where the signal is limited to be a station-
ary process with finite memory and alphabet. In (Ebadat et al. (2014b)) this restriction is
not present, but the approach cannot be applied for closed-loop identification unlike the
method introduced in this chapter. Our approach tackles the general case of multiple ac-
curacy constraints (see (3.2)) while (Ebadat et al. (2014b,a)) treated the case of one single

1Parts of this chapter have been published in (Potters et al. (2016b)).
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constraint (see (3.10)).
Our approach is based on the nonlinear optimisation algorithm proposed by Guillaume

et al. (1991) that is adapted by Manchester (2009), where multi-sines are considered to
construct excitation signals. We will refer to this adapted algorithm as the Guillaume-
Manchester algorithm. It allows to treat optimisation problems minimising a scalar mea-
sure of the covariance matrix under input and output constraints. The scalar measure can
be e.g. the determinant of the covariance matrix (D-optimality, as considered by Manch-
ester (2009)), and its largest eigenvalue (E-optimality).

In order to use this efficient algorithm for the optimal experiment design problem con-
sidered in this chapter, we use the fact that it is a generalised eigenvalue problem (Boyd and
Vandenberghe (2003)). The parameter accuracy constraints are indeed first transformed in
an equivalent scalar one stating that the experiment time should be larger than the largest
eigenvalue of a generalised and weighted covariance matrix of the parameter estimate. The
amplitudes and phases of the multi-sine can then be determined by minimising the largest
eigenvalue of this weighted covariance matrix while respecting the amplitude bounds on
the input and output signals. This optimisation problem is efficiently solved with the non-
linear algorithm presented in (Guillaume et al. (1991); Manchester (2009)). We provide
analytical expressions for the gradients that support fast convergence of this algorithm, the
derivation of which is more involved than in (Manchester (2009)) where D-optimality is
considered. The minimal experiment time is then deduced straightforwardly as the optimal
value of the objective function of this optimisation problem, i.e., the largest eigenvalue of
the weighted covariance matrix evaluated at the amplitudes of the optimal multi-sine.

The outline of this chapter is as follows. We first recapitulate some concepts of the Di-
rect Identification method in Section 8.2, formulated for multi-sine signals. We introduce
the parameter accuracy constraints in Section 8.3 and prove that any finite number of LMI
constraints of the form (3.2) can be written as a single scalar one. We then proceed with the
Minimum Experiment Time Algorithm that we introduce in Section 8.4. Two illustrations
are provided in Section 8.5.

8.2 A Brief Refresher

In this section we will briefly review the identification framework presented in Chapter
2 and we will particularise it to the case considered in this chapter. We will do that for
the Direct closed-loop identification method for discrete-time systems. Note that open-
loop identification is a special case of this method and the Indirect closed-loop identifi-
cation method can be seen as an open-loop identification method with a tailored choice
of parametrisation of the model structure. Continuous-time transfer functions can also be
identified with slight modification of this framework as shown in Chapters 6 and 7. Indeed,
one can rather easily replace the discrete-time transfer functions by continuous-time ones,
as we shall see in this chapter.

To this end, consider a discrete-time linear data-generating system, called the true
system, defined by

u[n] = r[n]−C(q)y[n], (8.1)
y[n] = G(q,θ0)u[n]+H(q,θ0)e[n], (8.2)
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where r[n] ∈ R is the to-be-designed excitation signal, u[n] ∈ R and y[n] ∈ R represent
the discrete-time input and output of the true system, e[n] ∈R a sampled white-noise with
variance σ2

e , C(q) a linear, time-invariant controller, and G(q,θ0) and H(q,θ0) are stable,
rational, finite-order transfer functions. Furthermore, H(q,θ0) is monic and minimum
phase. The sampling time Ts = 1 is chosen for notational brevity. The excitation signal is
parameterised as a multi-sine with M harmonics:

r[n] =
M

∑
m=1

Am sin(mω f n+φm), (8.3)

in which Am and φm are the amplitude and phase of the mth harmonic, where m = 1, . . . ,M.
We define A = {Am}M

m=1, φ = {φm}M
m=1 and Ω = {A,φ}. Unlike in optimal experiment

design with power constraints where the phases did not appear in the optimisation problem
(see Chapter 3), we will here optimise both the amplitudes and the phases in the multi-
sines. The multi-sine (8.3) is periodic with period T = 2π

ω f
and has a fundamental frequency

ω f . Suppose now that we apply N samples of the signal {r[n]}N
n=1 to the true system. We

collect the input and output data in the set ZN = {u[n],y[n]}N
n=1. The true parameter vector

θ 0 can then be estimated using a full-order model structure M = {G(z,θ),H(z,θ)} with
a prediction error method (c.f. Chapter 2):

θ̂N = argmin
θ

1
N

N

∑
n=1

ε
2[n;θ],

where ε[n;θ ] = H−1(z,θ)(y[n]−G(z,θ)u[n]) is the prediction error. In the limit N → ∞

the estimate θ̂ N will be asymptotically normally distributed around θ 0 under conditions
that can be found in Chapter 2. Using Parseval’s relation a frequency-domain expression
of P−1

N,θ for the input signal (8.3) can be deduced and reads (Ljung (1999))

P−1
N,θ[A] =

N
2σ2

e

M

∑
m=1

A2
mRe

{
Fr(e−imω f ,θ0)F∗r (e

−imω f ,θ0)
}
+R0, (8.4)

where PN,θ is the covariance matrix for an experiment with N samples. For instance, if
N = 1, then the corresponding covariance matrix is denoted by P1,θ . Furthermore, the
terms Fr and R0 in (8.4) are defined as

Fr(e−imω f ,θ 0) = H−1
0 (e−imω f )S0(e−imω f ,θ 0)ΛG(e−imω f )

and
R0 =

N
2π

∫
π

−π

Fv(e−iω ,θ 0)F∗v(e
−iω ,θ 0)dω,

where Fv(e−iω ,θ 0) = H−1
0 (e−iω)ΛH(e−iω)−C(e−iω)S0(e−iω)ΛG(e−iω). In these equa-

tions, S0 = (1+CG0)
−1 is the sensitivity function of the closed-loop system, ΛG(e−iω) =

[∇θG(e−iω)]θ=θ 0 , ΛH(e−iω) = [∇θH(e−iω)]θ=θ 0 , and the asterisk denotes complex con-
jugation. The inverse of the covariance matrix is a strictly positive definite symmetric
matrix, i.e. P−1

N,θ � 0.

Note that, like in Chapter 7, the experiment length N will also be considered in this chapter
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as an extra decision variable of the optimal experiment design problem: the objective will
indeed be to minimise this length N.

8.3 Parameter Accuracy Constraints

In the introduction we mentioned that we consider the optimal experiment design problem
of Ebadat et al. (2014b). As mentioned in Section 8.1, the parameter accuracy constraint
in that paper is of the form P−1

N,θ � Radm. Using the sensitivity analysis of Hjalmarsson
(2009) that is based on a second-order Taylor approximation, such a constraint guarantees
an acceptable performance level for the loop made up by the true system and the controller
designed with the identified model (see Section 3.2.3). As also shown in that section, we
can, however, be faced in practice with multiple constraints of the above type, i.e.,

P−1
N,θ [A]�Radm( j) for all j = 1, . . . ,J, (8.5)

in which J ∈ N+ the number of constraints, and the matrices {Radm( j)}J
j=1 are symmet-

ric and (κ ×κ)-dimensional, where κ = dim(θ0). These constraints are the same as the
LCED problem (3.1)-(3.2). The case in (Ebadat et al. (2014b)) corresponds to J = 1 in
whichRadm is non-singular. In the case of J ≤ κ variance constraints on J to-be-identified
parameters, (8.5) is used with (3.14).

We recall that our goal is to minimise the experiment time N while respecting the
constraints (8.5) and the amplitude constraints on the input u and output y of the closed-
loop (8.1) during the identification experiment. In the introduction, we mentioned that
we will solve this problem with the nonlinear optimisation algorithm in (Guillaume et al.
(1991); Manchester (2009)). To apply this algorithm, we first need to transform the LMI
constraints (8.5) into a single scalar one. This is done in the following theorem.

Theorem 8.1 Consider the LMI constraints in (8.5). These constraints are equivalent to
the following scalar one:

N ≥ λmax (P1,θ[A]Radm) . (8.6)

with P1,θ and Radm given by the two Jκ × Jκ-dimensional block-diagonal symmetric
matrices

P1,θ [A] = diag(P1,θ [A], . . . ,P1,θ [A])� 0, (8.7)
Radm = diag(Radm(1), . . . ,Radm(J)), (8.8)

in which P1,θ [A] is the inverse of (8.4) for N = 1.
Proof: Using Lemma 4.1 we first rewrite the constraints (8.5) as

∀ j = 1, . . . ,J : N ≥ λmax
(
P1,θ [A]Radm( j)

)
, (8.9)

which are equivalent to the single constraint

N ≥max
[
λmax(P1,θRadm(1)), . . . ,λmax(P1,θRadm(J))

]
. (8.10)
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Then, since P1,θ and Radm are block-diagonal matrices, we have

det(P1,θRadm−λIJκ×Jκ) =
J

∏
j=1

det(P1,θRadm( j)−λIκ×κ).

Thus, the Jκ eigenvalues of P1,θ [A]Radm are equal to the eigenvalues of the following
matrices: P1,θRadm(1), . . ., P1,θRadm(J). Equation (8.10) is therefore equivalent to N ≥
λmax(P1,θ [A]Radm), see (8.6). This concludes the proof. 2

Remark 8.1 Since (8.6) is equivalent to (3.2), this theorem shows that the LCED problem
(3.1)-(3.2) is a dual of a generalised and weighted E-optimality problem.

Remark 8.2 The single constraint (8.6) is equivalent to

λmin

(
P−1

N,θR
−1
adm

)
≥ 1 (8.11)

in the case that all {Radm( j)}J
j=1 are non-singular. This follows from the analysis in

Section 3.3, or from ((Larsson, 2014, Ch. 5)). There, it is proven for a non-singular Radm
that a single constraint given by (8.9) for J = 1, is equivalent to λmin(T

−1P−1
N,θT

−1)≥ 1,
where Radm = TTH . Following similar steps as taken in Lemma 4.1, generalising to
J > 1, and defining the block-diagonal matrices P−1

N,θ and Radm then also leads to (8.11).

Remark 8.3 Although (4.5) could be used in the remainder of this text, it will be conve-
nient to use (8.6) instead since this eigenvalue does not contain the square root of P1,θ in
its argument. This property will be important in the Guillaume-Manchester algorithm that
is used in Section 8.4.

8.4 Minimal Experiment Time Algorithm
Let us now formulate mathematically the optimisation problem of Ebadat et al. (2014b)
using Theorem 8.1 to replace the accuracy constraint with its scalar equivalent (8.6). The
input and output signal amplitude bounds that we want to respect during the closed loop
identification are respectively umax and ymax. This yields

min
A,φ,N

N (8.12)

subject to

fu(A,φ), ||ur(A,φ)||∞/ur,max ≤ 1, (8.13)

fy(A,φ), ||yr(A,φ)||∞/yr,max ≤ 1, (8.14)
N ≥ λmax (P1,θ[A]Radm) , (8.15)

where ||ur(A,φ)||∞ = maxn |ur[n]| and ||yr(A,φ)||∞ = maxn |yr[n]| represent the maxi-
mum absolute value of the noise-free input ur[n] = S0(q)r[n] and noise-free output yr[n] =
S0(q)G0(q)r[n] (i.e. the amplitudes), Radm as defined in Section 8.3, and ur,max ∈ R+ and
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yr,max ∈ R+ are the amplitude bounds of ur and yr:

ur,max = umax−∆u, yr,max = ymax−∆y. (8.16)

Here, ∆u and ∆y are user-chosen maximum noise disturbances caused on respectively u[n]
and y[n]. These deviations can be computed with for instance the simulation of ue[n] =
−S0(q)C(q)H0(q)e[n] and ye[n] = S0(q)G0(q)H0(q)e[n], where it is understood that u[n] =
ur[n]+ue[n] and y[n] = yr[n]+ ye[n]2.

Problem (8.12)-(8.15) is a Generalised EigenValue Problem (GEVP). The aim is to
find the smallest value of N for which (8.13)-(8.15) are feasible for some values of N, A,
and φ . It is obvious that the optimal experiment time N∗ and the optimal amplitudes A∗

are related by the following optimality condition3:

N∗ = λmax
(
P1,θ [A

∗]Radm
)
. (8.17)

The solution to (8.12)-(8.15) is found with the following steps:

1. Solve the optimisation problem

min
{A,φ}

J = λmax (P1,θ[A]Radm) (8.18)

subject to

fu(A,φ)≤ 1, fy(A,φ)≤ 1, (8.19)

where the objective function is the r.h.s. of the constraint (8.15), fu(A,φ) and
fy(A,φ) defined in (8.13)-(8.14), and P1,θ given by (8.7). This problem is solved
with the Guillaume-Manchester algorithm detailed in Appendix 8.A. Denote Ω∗ =
{A∗,φ ∗} as the solution of this problem, and J∗ as the minimum value of the objec-
tive function.

2. Use the optimality condition (8.17) to set the minimal experiment time:

N∗ = J∗ = λmax
(
P1,θ [A∗]Radm

)
. (8.20)

Note that in this step, we do no additional computation: we merely use the result
from step 1. However, we stress that we here set the optimal experiment length N∗,
whereas in step 1 we used N = 1 to find the optimal amplitudes and phases.

This two-step approach is valid due to the special form of condition (8.17). It allows us
to design A,φ independently of N. It is obvious from inspecting (8.12)-(8.15) that the
amplitudes A∗ determined via (8.18)-(8.19) are the ones that fulfil the parameter accuracy
constraint (8.15) with the smallest experiment time N. Moreover, since the excitation
signal r[n] is periodic, the signals ur[n] and yr[n] are also periodic with the same period.
Consequently, it is sufficient to verify (8.19) over one single period of the excitation signal
to guarantee that these constraints hold for any experiment length N. This is how (8.18)-
(8.19) is solved in Appendix 8.A.

2The simulations of ue and ye are performed by replacing θ0 by an estimate θinit
3N being an integer, (8.17) is of course rounded up to the nearest integer.
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The optimal excitation signal {ropt [n]}N
n=1 (c.f. (8.3)) used for identification is then

defined by N = N∗ and Ω = Ω∗ that are found with steps 1) and 2).

Remark 8.4 In some problems the matrix Radm is non-singular. The constraints ∀ j =
1, . . . ,J : P−1

N,θ[A] � Radm( j) in Section 8.3 can then be recast into (8.11). Consequently,
the constraint (8.15) may be replaced with Nλmin(P−1

1,θR
−1
adm)≥ 1, and the optimality con-

dition (8.17) becomes N∗λmin(P−1
1,θ[A

∗]R−1
adm) = 1. Furthermore, the objective function in

(8.18) becomes −λmin(P−1
1,θ[A]Radm) and (8.20) is changed to

N∗ =
1

λmin(P−1
1,θ [A

∗]R−1
adm)

.

It can be beneficial to use the above criterion if Radm is non-singular. Indeed, the conver-
gence of the Guillaume-Manchester algorithm may in this case be faster than when using
(8.6) due to a simpler eigenvalue gradient.

8.5 Numerical Illustrations

8.5.1 Introduction
This section provides several examples that illustrate the Minimal Experiment Time (MET)
algorithm. In particular, these will show the advantage of using the approach presented
in Section 8.4 over a design that would consist of using a classical design with power
constraints (see Chapter 3), and subsequently scaling this result to furthermore respect
amplitude constraints.

First, we will revisit the case study of Chapter 6 and show that the optimal solution
ropt [n] = Aopt sin(ωoptn) computed there can be improved when, instead of minimising the
power of the signal under the considered accuracy constraints, we minimise the experiment
length under the same accuracy constraints and furthermore impose the constraint that the
input amplitude cannot exceed the value Aopt . We will see that under the same conditions
the experiment time resulting from the MET algorithm is much less than the ones resulting
from the classical approach.

Second, we consider a four-parameter, discrete-time, black-box system. We compare
the classical approach to the novel one in the case of an active input constraint, and active
output constraint. We will also compare these solutions and provide interpretation.

Third, we revisit the Pressure Oscillation experiment of Chapter 7. In that chapter, we
have proven that when identifying two parameters, a square wave delivers shorter experi-
ment times than sinusoidal ones (under the same conditions). We have however not shown
that square waves deliver the shortest possible experiment times. To this end, we compare
as a last example the optimal square wave signal for the Indirect Method, computed in Sec-
tion 7.5, with the one calculated here using the MET algorithm. We take the same input
and parameter accuracy constraints and show that it is very likely that the optimal solution
computed in Chapter 7 is indeed the one delivering the shortest possible experiment time.
(We say very likely since the MET algorithm is not convex, so the solution obtained here
might still be sub-optimal).

All three examples consider open-loop identification, i.e.,R0 = 0, C(z) = 0, and S(z) = 1.
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Algorithm
Parameters Front-Face Four-Parameter Model PO Experiment

Input Active Output Active

M 100 75 75 50
ω f π/10 0.1 0.1 0.37
umax Aopt = 1.7067 1.0 1.0 0.0313
ymax 103 103 3.7 103

γu 1.0 1.0 103 1.0
γy 103 103 1.0 103

L 256 103 103 512
pend 5 5 5 6
Ts 0.1 0.419 0.419 4×0.021

Table 8.1: Parameters used to initialise the Guillaume-Manchester algorithm in Appendix 8.A for respectively the example in
Section 8.5.2, 8.5.3, and 8.5.4. The sampling times Ts are not independently chosen but given by TS = π/(Mω f ).

Furthermore, for the sake of simplicity, we take a noise model H(z) = 1 and ∆u = ∆y = 0.
For all examples, we compare the minimum time of (8.12)-(8.15) with the problem (8.23)-
(8.26) defined in Appendix 8.A, in which the values of umax, ymax, L, ω f , M, Radm, γu, and
γy can be found in Table 8.1 for each case, and of which the optimal amplitudes are scaled
to A∗LCED using (8.28) to satisfy the input and output amplitude constraints. The optimal
experiment length found with (8.23)-(8.26) is then subsequently scaled to N∗LCED, which
ensures that (8.15) is also satisfied. The optimal phases φ ∗LCED for all cases are selected
using Schroeder phases, see (8.27). The LCED-like solution Ω∗2 = {A∗LCED,φ

∗
LCED} is used

to initialise the Guillaume-Manchester algorithm at p = 2, see Section 8.A.

8.5.2 Front-face Experiment Revisited
Chapter 6 considered the LCED problem (3.1)-(3.2) for a scaled front-face experiment, in
which the scaled input u[n] and scaled output y[n] were connected through 4

G(s,θ0) =
1
λ0

√
α0

iω
tanh

(√
iω
α0

)
.

The output was corrupted with Gaussian white noise of variance σ2
e = 0.05. The true

scaled parameter vector was defined by θ0 = (α0,λ0)
T = (1.0,1.0)T , i.e., the thermal

diffusivity and conductivity, respectively. The solution to the LCED problem at an ex-
periment length of N = 9000 and parameter variance constraints (6.37) was one scaled
sinusoid of amplitude Aopt = 1.7067 and frequency ωopt = 1.57, see (6.40). We have there
considered a multi-sine parameterisation of the excitation signal (3.6) defined by M = 100
and ω f = π/10 (Ts = 0.1 seconds).

Now, we pose the question whether we can reduce the experiment length while con-
serving the amplitude bound A = Aopt = 1.7067 if we also optimise the phases of the
multi-sine. We thus consider exactly the same experiment, but instead use the MET algo-
rithm. To this end, the Guillaume-Manchester algorithm is initialised with the parameter
values tabulated in Table 8.1, and the ones specified above. Furthermore, the matrix Radm

4We have dropped all tildes on the scaled variables and parameters for notational simplicity.
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Figure 8.1: (a) The optimal input spectrum of the solution of the MET algorithm (blue) compared with the optimal spectrum
found with the classical LCED method (red). (b) Time-domain realisation of the optimal input signals as a function of time for
the optimal spectra in Fig. 8.1a (same color coding).

is constructed using J = 2 and the constraints (6.37).

Let us now compare the results. The optimal input spectrum resulting from the MET algo-
rithm (8.12)-(8.15) and the LCED solution Ω∗2 = {A∗LCED = Aopt ,φ

∗
LCED = 0}, N∗LCED =

90005, are respectively shown in blue and red in Fig. 8.1a, and their time-domain realisa-
tions in Fig. 8.1b.

The LCED optimal input frequency appears at the mode m = 5, corresponding to ω5 =
ωopt = 1.57 rad/s. Notice that the dominant frequency of the optimal signal using the MET
algorithm is close to ωopt . This is intuitively pleasing, as the LCED solution attempts to
minimise the sum of squared amplitudes (i.e. the power). Minimising the amplitude is
indeed also effective in minimising the experiment length under the amplitude constraints.
The MET algorithm is able to increase the amplitude close to ωopt = 1.57 rad/s with a
factor of about 1.17 by adding higher modes to the input signal. The result is a signal that
has a block-like structure. The minimum experiment length using the MET algorithm is
N∗ = 5926, a reduction of almost 34%.

Remark 8.5 Since the MET algorithm (8.12)-(8.15) is not convex, the solution obtained
for the front-face experiment might still be suboptimal. Indeed, the square wave

u[n] =
4A
π

M

∑
m=1

sin([2m−1]ωcn)
2m−1

(8.21)

with M = 100, A = Aopt = 1.7067 and ωc = 1.57 yields a minimal experiment time NSW
that, by virtue of Lemma 7.1, is guaranteed to be a factor 16/π2 smaller than N∗LCED =
9000, i.e., NSW ≤ 5552. (This solution clearly also respects the input and parameter ac-
curacy constraints.) We see that it is also smaller than N∗ = 5926 found with the MET
algorithm; an improvement of about 6%.

5This is simply the solution (6.40) from Chapter 6.
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8.5.3 A Four-Parameter Rational Transfer Function Model

We proceed with an example that we have not considered so far. Consider the open-loop
discrete-time system (2.1)-(2.2) in which the transfer function is given by

G(z,θ0) =
θ1z−1 +θ2z−2

1+θ3z−1 +θ4z−2 , (8.22)

with θ0 = (0.8,0,−0.9854,0.8187)T . Furthermore, H(z) = 1 and the Gaussian noise vari-
ance σ2

e = 1.20. We consider an accuracy constraint defined by J = 1 and Radm = Radm =
104I4×4, i.e. P−1

N,θ � Radm = 104I4×4.

As for the previous example, we compare the LCED-like solution Ω∗2 = {A∗LCED,φ
∗
LCED},

N∗LCED (detailed at the start of this section) to the solution of the MET algorithm (8.12)-
(8.15). We will do this for the cases in which either (i) the input constraint is active
(umax = 1, ymax = 103), or (ii) the output constraint is active (umax = 103, ymax = 3.7).
The Guillaume-Manchester algorithm is initialised with the parameters shown the third
and fourth column of Table 8.1 for the respective cases (i) and (ii), and the ones specified
above. The results are as follows.

We start with case (i). The optimal input spectrum of the MET and LCED-like solu-
tions are respectively shown in blue and red in Fig. 8.2a, and their time-domain realisations
in Fig. 8.2b. We see that the two frequencies corresponding to the optimal signal in the
LCED-like formulation (8.23)-(8.26) are also present in the MET solution. Note that, as
in the previous example, the MET spectrum contains high amplitudes around, and at, the
optimal frequencies of the LCED-like solution. Clearly, minimising the sum of squared
amplitudes also plays a dominant role in finding the minimal experiment time under am-
plitude constraints. As in the previous example, we also observe that the blue time-domain
signal has a block-like structure. To satisfy the input and output bounds, as well as the ac-
curacy constraint, the LCED experiment length N∗LCED = 104, whereas N∗ = 4587 using
the MET algorithm; a reduction of about 56%.

Let us now consider case (ii), i.e. the situation with an active output constraint. The
solution spectra of the MET algorithm of the cases (i) and (ii) are shown in Fig. 8.2c
in respectively purple and blue. In this figure, we also superimposed the absolute value
of G(e−iω ,θ0) (8.22) as a function of frequency (scaled by a factor ten). The four grey
curves show the real part of the four elements in the gradient ∇θG(z,θ) evaluated at θ= θ0
(scaled by a factor fifty). Figure 8.2d shows the time-domain output signals corresponding
to the optimal spectra in Fig. 8.2c (same color coding). Comparing the optimal spectra
from the MET algorithm for the cases (i) and (ii), we observe the following. First, notice
that in both cases the dominant frequencies reside at the modes where both the elements in
the gradient of (8.22) and the frequency response (8.22) are large. That these frequencies
are selected is not surprising for case (i), since the LCED-like solution (see red spectrum
in Fig. 8.2a) has already shown that the sum of amplitudes is then minimised, which
also eases the minimisation of the experiment length under an input amplitude constraint
(c.f. (2.9)). Second, we see from Fig. 8.2c that the optimal spectrum for case (ii) (blue)
has dominant frequencies that are shifted away from the peak of the frequency response
of (8.22) (shown in black). This is an intuitively pleasing result. Indeed, in order to
minimise the experiment length under the active output constraint ymax, modes should be
selected at which the amplitudes Am of the input signal are not amplified too much by
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Figure 8.2: (a) The optimal input spectrum for the four-parameter example under an active input constraint using the MET
algorithm (blue) compared with the optimal spectrum found with the classical LCED method (red). (b) Time-domain realisation
of the input signals for the optimal spectra shown in Fig. 8.2a (same color coding). (c) The optimal input spectrum of the
MET algorithm for the four-parameter example under an active output constraint (blue) and active input constraint (purple). The
absolute value of (8.22) scaled by a factor ten is shown in black. The four elements of the gradient of (8.22) evaluated at θ = θ0,
scaled by a factor fifty, are shown in grey. (d) Time-domain realisation of the output signal as a function of time for the optimal
spectra in Fig. 8.2c (same color coding). The dark grey horizontal lines indicate the output constraint |ymax|.
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(8.22) (otherwise the input amplitudes have to be drastically reduced to still satisfy the
output constraint, leading to an increased experiment time, see (2.9)). On the other hand,
it is beneficial to select frequencies where the elements of the gradient are large, as for
case (i). Hence, in this example, a trade-off has to be made between these two competing
effects. This trade-off consequently leads to a minimal experiment time N∗ = 5810 that is
about 27% longer than the minimal experiment time of case (i). We note that this trade-off
becomes more pronounced when decreasing ymax, i.e., the dominant frequencies in this
case shift away even more from the peak of the frequency response of (8.22).

8.5.4 Pressure Oscillation Experiment Revisited

In this last example, we consider the scaled pressure oscillation experiment from Chapter
76. There, the experiment time was minimised subject to an input amplitude constraint
and variance constraints on the permeability k and porosity φ parameters. The input con-
straint was given by umax = Cγm = 0.0313, and the variance constraints on the estimates
by var(k̂N) ≤ 2.5×10−3 and var(φ̂N) ≤ 2.5×10−3. We will in particular re-examine the
optimal square wave signal that was obtained for the Indirect Method, see Section 7.5.
There, the optimal square wave solution had a cycle frequency ωc,opt = 1.0 and an ampli-
tude A = Aopt = 0.0313 (equal to the limit of the actuator: Cγm = γm

φs
fi,opt

). The optimal
degrees of freedom in this case were fi,opt = 0.6 and fe,opt = 6.1. The variance of the
white noise was σ2

e = 0.05. The minimal experiment length corresponding to this optimal
square wave was Nopt = 1.8×106 at a sampling time of Ts = 0.021 seconds.

We assumed in Chapter 7 that a square wave is a good choice to minimise the ex-
periment length under the input amplitude and parameter accuracy constraints. Let us in
this section validate this assumption by considering, under the exact same conditions, the
solution to the MET algorithm. As done in all the previous examples, the algorithm is
initialised with the parameters reported in Table 8.17. We furthermore fix fi and fe to their
optimal values reported above.

The optimal input spectrum resulting from the MET algorithm is shown in Fig. 8.3a.
Its corresponding time-domain signal is shown in Fig. 8.3b. Notice that we obtain a signal
that is essentially a square wave signal. It is not a perfect square wave due to the fact that
we have a sampling time larger than zero (the number of modes M in (8.21) is therefore
not infinite). The corresponding optimal cycle frequency is located at the mode m = 3, i.e.,
ωc,opt = 1.11 rad/s.

The optimal experiment length is N∗ = 2.076× 106, which is about 15% longer than
Nopt = 1.8×106 found in Section 7.5. This difference could be the result of an ω f that is
too large, and due to the fact that the solution corresponds to a local minimum that is close
to the global one of the problem (8.12)-(8.15).

Notwithstanding this difference, the numerical solution obtained with the MET algo-
rithm validates (to some extent) the assumption of Chapter 7 that a square wave is a good
signal to minimise the experiment length.

6All the results reported in this section correspond to the scaled system considered in Section 7.5.
7Note that we artificially increased the sampling time to four times of the ones used in Section 7.5. This

ensures that the number of modes M = 50 (for which Ts = 4×0.021) instead of M = 200 (for which Ts = 0.021)
for the fundamental frequency ω f = 0.37 rad/s. This speeds up the numerical algorithm.
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Figure 8.3: (a) Optimal input spectrum resulting from the MET algorithm for the Pressure Oscillation experiment. (b) The
corresponding optimal input signal. Notice that it resembles a square wave signal.

8.6 Summary
We considered the input design problem of finding the minimal required experiment time
such that accuracy constraints on the parameter estimate of an identification experiment
are satisfied, while also respecting signal amplitude bounds. The input signal is param-
eterised as a multi-sine. We first show how multiple linear matrix inequalities from the
least-costly and applications-oriented experiment design frameworks can be transformed
into a generalised E-optimality constraint. Then, the solution to our problem is found
by: (i) designing a multi-sine of one period with the Guillaume-Manchester algorithm
(Guillaume et al. (1991); Manchester (2009)) that minimises the generalised E-optimality
criterion under signal amplitude bounds, and (ii) utilising periodicity and an optimality
condition to scale the experiment time such that the imposed accuracy constraints are also
respected. Examples show experiment time reductions of more than 40% compared with
the traditional least-costly experiment design approach from Chapter 3.

The numerical results in this chapter seem to suggest that block-shaped signals form the
right basis to find optimal experiment times. Instead of designing the optimal multi-sine
input signal, one could instead consider designing the optimal block-shaped signal, i.e.,
a binary input signal with optimally chosen switches between the two values. Probably,
the dominant frequencies in this signal would be close to the optimal frequencies obtained
from the traditional LCED problem. Developing an algorithm to compute such signals is
an interesting future research possibility.

8.A Guillaume-Manchester Algorithm
In this appendix we solve (8.18)-(8.19) using the Guillaume-Manchester algorithm defined
below. We refer the reader to (Guillaume et al. (1991); Manchester (2009)) for more de-
tails. Conceptually, the idea is to solve (8.18)-(8.19) iteratively by replacing the amplitude
of ur,yr by the p-norms of these signals and by increasing the value of p at each iteration.
We have indeed that the maximal amplitude of a a signal is given by its p-norm for p = ∞.

Before presenting the algorithm, we make two observations. First, since r is a multi-
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sine, the signals ur and yr are also multi-sines (with the same period). Consequently,
we have to only consider one period of these signals to verify the amplitude constraints.
Second, if the actual sampling frequency is not very high, taking the maximal values of
ur[n] and yr[n] may result in poor estimates of the actual amplitudes of their continuous-
time equivalents. However, we are not obliged to use the actual sampling frequency to
solve (8.18)-(8.19). We can artificially increase the sampling frequency to more accurately
determine the amplitudes by deducing analytically the continuous-time expressions of ur
and yr. We assume that the excitation signal r is also continuous and that the discrete-
time closed-loop transfer functions relating r with ur,yr are equal to their continuous-time
counterparts in the frequency range [0,π] (we assume Ts = 1 for simplicity). With these
analytical expressions we can sample these signals at any sampling rate. Let us assume
that for this high sampling frequency, L+ 1 is the number of samples of one period of
r,ur and yr. In the sequel, we will subsequently compute the p-norms of ur,yr for the
Guillaume-Manchester algorithm using ur[l] and yr[l] for l = 0, . . . ,L.

The Guillaume-Manchester algorithm is defined as follows. The input and output sig-
nals are constructed with the amplitudes and phases, i.e. Ω, of the excitation signal r. We
define Ap = {A1, . . . ,AM}p and φ p = {φ1, . . . ,φM}p as its amplitude and phase variables
at step p ∈ [2,4,8, . . . , pend ], and their elements are denoted by Ap,m and φp,m.

Initialisation. Select the fundamental frequency ω f and number of harmonics M of the
multi-sine {r[l]}L

l=0 (8.3). The solution for p = 2 is {A∗2,φ ∗2}= Ω∗2 and given by the user.
It initialises the Guillaume-Manchester algorithm. One way to initialise Ω∗2 is to solve
the following optimisation problem (of the LCED type) that considers power constraints
instead of amplitude ones. Define the multi-sine (8.3) for the user-chosen values ω f and
M and solve the Generalised EigenValue Problem (GEVP):

min
A

N (8.23)

subject to

1
2

M

∑
m=1
|S0(e−imω f )|2A2

m ≤ γu, (8.24)

1
2

M

∑
m=1
|S0(e−imω f )|2|G0(e−imω f )|2A2

m ≤ γy, (8.25)

NP−1
1,θ [A]�Radm, (8.26)

where γu,γy are bounds on respectively the input and output power, and the last constraint
equal to (8.15).

Furthermore, we define the phases at p = 2 using Schroeder phases (see also Manch-
ester (2009)), i.e.,

φ
∗
2,m =−2π

m−1

∑
q=1

(m−q)A∗2,m, (8.27)

which reduce the amplitudes of the input and output signals.
The optimal amplitudes from the above problem and the phases φ ∗2,m are then used to

design {ur[l]}L
l=0 and {yr[l]}L

l=0. To ensure that the constraints (8.13)-(8.14) are respected,
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the amplitudes are then uniformly scaled until we have the solution Ω∗ for which either
fu(Ω

∗
2) = 1, fy(ω

∗
2 ) ≤ 1 or fu(Ω

∗
2) ≤ 1, fy(Ω

∗
2) = 1 (see (8.28)), and N is subsequently

scaled such that (8.15) is furthermore respected.

Iterative steps. Solve for p = 4,8,16, . . . , pend the following optimisation problem:

Use the solution of previous step, A∗p/2 and φ
∗
p/2, and scale to fit constraints and provide

the next initial guess:

Ap =
A∗p/2

max
[

fu,p(A∗p/2,φ
∗
p/2), fy,p(A∗p/2,φ

∗
p/2)
] , (8.28)

φ p = φ
∗
p/2, (8.29)

where fu,p = ||ur(A,φ)||pp, fy,p = ||yr(A,φ)||pp, and ||x(k)||p ,
( 1

K ∑
K
k=1 |x(k)|p

)1/p
. Then

solve
A∗p,φ

∗
p = arg min

{Ap,φ p}
λmax

(
P1,θ [Ap]Radm

)
(8.30)

subject to
fu,p(Ap,φ p)≤ 1, fy,p(Ap,φ p)≤ 1. (8.31)

The nonlinear optimisation problem (8.30)-(8.31) is solved with any nonlinear optimisa-
tion solver (e.g. the fmincon function of Matlab) using Ap and Φp as initial guess for the
solution. After the last iteration, the solution to (8.18)-(8.19) in Section 8.4 is provided by
the solution of the Guillaume-Manchester algorithm and is denoted by Ω∗= (A∗pend

,φ ∗pend
).

8.B Gradients for the Guillaume-Manchester Algorithm
The gradients of the objective function and constraints can be numerically computed with
the fmincon function used to solve (8.30)-(8.31). However, the speed of convergence can
be greatly improved when providing fmincon with analytical gradients. Here these gradi-
ents are provided.

Objective function in (8.30)

We assume that the eigenvalues of matrix P1,θRadm are simple, and that this matrix is
non-defective. Denote vmax as the right eigenvector corresponding P1,θRadm, i.e., we
have (

P1,θ [Ap]Radm
)

vmax[Ap] = λmax[Ap]vmax[Ap]. (8.32)

Furthermore, define wmax as the right eigenvector of (P1,θRadm)
T , i.e., wT

max is the left
eigenvector of P1,θRadm:

wT
max[Ap]

(
P1,θ [Ap]Radm

)
= λmax[Ap]wT

max[Ap]. (8.33)

We normalise the vectors wmax and vmax such that wT
maxvmax = 1. Define the matrix

B[Ap] = P1,θ [Ap]Radm, then taking the derivative of (8.32) w.r.t. Ap,m on both sides
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results in (
∂

∂Ap,m
B[Ap]

)
vmax[Ap]+B[Ap]

(
∂

∂Ap,m
vmax[Ap]

)
=(

∂

∂Ap,m
λmax[Ap]

)
vmax[Ap]+λmax[Ap]

(
∂

∂Ap,m
vmax[Ap]

)
.

Multiplying both sides with wT
max from the left and using (8.33), wT

maxvmax = 1, and the
definition of B[Ap], we obtain

∂

∂Ap,m
λmax[Ap] =−wT

max[Ap]

(
P1,θ [Ap]

∂

∂Ap,m

(
P−1

1,θ [Ap]
)
P1,θ [Ap]Radm

)
vmax[Ap],

where we furthermore made use of the identity ∂

∂x X−1 =−X−1( ∂

∂x X)X−1. The gradient at
Ap =Ap is then easily found with (8.4) by evaluating the above equation for all {Ap,m}M

m=1
at Ap. Note that the gradient of P1,θ [Ap]Radm can be calculated analytically, whereas the
gradient of P1/2

1,θ [Ap]RadmP
1/2
1,θ [Ap] cannot. This observation motivated the last step taken

in Lemma 8.1, see also Remark 1.
Since (8.34) is not dependent on φp, we trivially have that the gradient

∇φ pλmax
(
P1,θ [Ap]Radm

)
= 0.

Constraints (8.31)

The derivatives of the constraints are now calculated. We assume that the excitation multi-
sine r is continuous. Following (Manchester (2009)) the functions fu,p and fy,p in (8.31)
are written as

fu,p(Ap,φ p) = η
T
u,pηu,p, fy,p(Ap,φ p) = η

T
y,pηy,p,

with ηu,p[l] = uk
r [l]/uk

r,max, ηy,p[l] = yk
r [l]/yk

r,max, k = p/2, and dim(ηu,p) = dim(ηy,p) =
L+ 1. The derivatives of these functions with respect to the amplitudes and phases are
then easily found:

∂ fu,p

∂Ap,m
= 2η

T
u,p

∂ηu,p

∂Am
,

∂ fu,p

∂φm
= 2ηu,p

∂ηu,p

∂φp,m
,

∂ fy,p

∂Ap,m
= 2η

T
y,p

∂ηy,p

∂Ap,m
,

∂ fy,p

∂φm
= 2ηy,p

∂ηy,p

∂φp,m
,

in which

∂ηu,p

∂Ap,m
[l] = k

uk−1
r [l]
uk

r,max
|S0(zm)|sin(ωml∆L+φp,m +φS),

∂ηu,p

∂φp,m
[l] = k

uk−1
r [l]
uk

r,max
Ap,m|S0(zm)|cos(ωml∆L+φp,m +φS),

in which φS = ∠S0(zm). The derivatives for ηy,p can be found analogously.
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Conclusions

”Measure what is measurable, and make measurable what is not so.” - Galileo
Galilei

9.1 Contribution of this thesis

The main contribution of this thesis is the development of several techniques that widen
the scope of the classical Least-Costly Experiment Design (LCED) framework (defined
in Chapter 3). In particular, we have extended the framework to include structured and
unstructured linear systems regulated by arbitrary controllers, and relevant costs and prac-
tical constraints.

The conclusions at a high level are as follows. The novel techniques from this thesis
can be used to solve more of the problems indicated in Fig. 9.1. (It is the same schematic
as shown in Chapter 1, here shown again for convenience.) We have generalised in Chap-
ter 6 the classical LCED framework such that we can now select at step I a system in the
class of linear PDEs with constant coefficients. In that chapter, we have also extended
the LCED framework to include degrees of freedom in the experiment set-up by intro-
ducing an efficient subdivision algorithm. The Stealth and Sensitivity methods introduced
in Chapter 5 allows experiment design on a system operated in closed-loop with an un-
known linear or (possible unknown) nonlinear controller, addressing step III. Lastly, with
the Minimum Experiment Time (MET) algorithm introduced in Chapter 8, another optimi-
sation problems (IV) can be solved. This novel algorithm finds the optimal input spectrum
(and degrees of freedom) that minimise the experiment time (the experiment cost) under
parameter accuracy constraints and input/output amplitude bounds (system constraints).
Next to these extensions, we have provided analytical solutions for some classical LCED
problems.

In the remainder of this section, we provide detailed conclusions of the specific prob-
lems that have been addressed in this thesis.

159
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Structured	and	Unstructured	Systems	(PDEs,	ODEs,	networks)

with or without

degrees	of	freedom	 in	experiment	set-up

in

Open	Loop Closed	Loopor

by solving the optimization problem

Accuracy constraint

System Constraints

subject to

and optional

min
⌅

Experiment cost

Design optimal input signal and experiment conditions for:

I.

II.

III.

IV.

MPC LTI Nonlinear Unknown

Figure 9.1: This diagram shows the type of problems that need to be solved with Experiment Design. The aim is to solve the
optimisation problem IV for any structured or unstructured system, with or without degrees of freedom in the experiment set-up,
and that can be in either open- or closed-loop. The symbol Ξ indicates the set of design variables in the optimisation problem,
which usually contains only the input spectrum Φr , but can also include degrees of freedom of an experiment set-up.
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Analytical Solutions and Interpretation

We have calculated in Chapter 4 analytical solutions to the classical LCED problem, de-
fined in Chapter 3, for continuous- and discrete-time uni- and bi-parametric models. The
solutions derived in Chapter 4 are general in the sense that they hold for an arbitrary but
finite number of parameter accuracy constraints, in which all or some of the constraint
matrices may be non-singular. For bi-parametric models, we motivate that a single-sine
solution is probably almost always optimal, whereas for uni-parametric models we prove
that this solution is in fact always optimal.

The solutions also aid in the interpretation of the optimal input spectra that would oth-
erwise have been obtained with convex numerical methods. These analytical solutions can
also be used to validate the numerical ones, as is done for several problems in Chapters 4,
6, and 8.

Several side results have also been obtained from the analytical approach. First, it likely
that no analytical solutions exist for systems with more than four unknown parameters, a
statement that traces back to Lemma 4.1. Indeed, in this lemma we have proven that the
Linear Matrix Inequalities used in the LCED framework may be equivalently written as a
single scalar constraint stating that the maximum eigenvalue of the weighted covariance
matrix should be smaller than unity. By virtue of Galois theory, we know that no solu-
tions exist for general polynomial equations of a degree higher than four. Consequently,
no analytical expressions for the eigenvalues of matrices larger than dimension four exist.
Therefore, it is unlikely that analytical solutions of the LCED problem exists for systems
with more than four unknown parameters.

Second, in Chapter 8 we have proven, using Lemma 4.1, that the classical LCED prob-
lem is in fact a generalised and weighted dual E-optimality problem. This nice result that
formally classifies the LCED problem within the A-, C-, D-, and E-optimality problems.

LCED for (Un)structured Systems with Unknown or Nonlinear Controllers

We have extended the LCED framework such that optimal spectra can now also be com-
puted for linear systems that are regulated by nonlinear or unknown controllers.

To this end, we have introduced the Stealth and Sensitivity methods in Chapter 5.
These methods generalise the framework considerably, since nonlinear controllers are es-
sentially the norm in industry. The Stealth Method adapts the usual Direct Method identi-
fication scheme such that the excitation signal is no longer observed by the controller. This
consequently leads to a LCED optimisation problem that is again numerically tractable.
The Sensitivity method, however, does not alter the identification scheme, but instead uses
prior data to estimate the sensitivity function between the input and excitation signal (for
instance using data that has also been used to provide an initial estimate of the true pa-
rameter vector in order to circumvent the chicken-and-egg issue; see Section 3.2.2). This
estimate can then be used to solve the LCED problem.

LCED for Structured Systems with Degrees-of-Freedom in the Experiment Set-Up

The vast majority of works on experiment design in the System Identification literature
deal solely with optimal input design. In the physical literature, however, the degrees-of-
freedom in the experiment set-up are optimised. In this thesis, we generalised the LCED
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framework to simultaneously optimise the input signal and such degrees of freedom. Ex-
amples of the latter are input and output measurement locations, and inlet and outlet vol-
umes in a Pressure Oscillation experiment (see Chapter 7). To this end, we have introduced
in Chapter 6 an efficient algorithm to compute the optimal input and degrees of freedom
for structured systems. It can be applied to discrete-time systems arising from Ordinary
Differential Equations, as well as continuous-time linear Partial Differential Equations
with constant coefficients. We have in particular studied diffusion-advection-reaction pro-
cesses.

Minimum Experiment Time Algorithm

We have introduced in Chapter 8 a novel algorithm, called the Minimal Experiment Time
(MET) algorithm, that computes the solution of an optimisation problem first formulated
by Ebadat et al. (2014b): minimise the experiment time subject to constraints on parameter
accuracies and input and output amplitude constraints. However, we solved this optimi-
sation problem by designing the amplitudes and phases of a multi-sine input signal con-
taining fixed frequencies. The MET algorithm is applicable to (un)structured systems in
open and closed loop, and can cope with the general case of multiple parameter accuracy
constraints (contrary to the existing methods).

It utilises the Guillaume-Manchester algorithm and generalises a method introduced
by Manchester (2009). It is applicable to (discrete- or continuous-time) open- and closed-
loop systems. This new formulation is better suited to real-life problems, in the sense that
input and output amplitude constraints are taken into account; the classical LCED problem
does not. On the other hand, the LCED problem in Chapter 3 is convex, whereas the novel
algorithm is not. Nonetheless, for many different types of systems experiment lengths
have been obtained that are at least 40% shorter than when scaling the classical LCED
solutions to satisfy input and output constraints. This mainly stems from the fact that the
new method optimises the phases of the multi-sine harmonics, compressing the overall
input or output amplitude (i.e. the crest of the input or output signal).

Optimal Input Signal Construction for Pressure Oscillation Experiments

Chapter 7 focusses on the application of experiment design to Pressure Oscillation exper-
iments. The goal of such an experiment is to estimate the permeability and/or porosity
value(s) of a core sample obtained from e.g. an underground oil reservoir. Such estimates
can then e.g. be used to calibrate computer reservoir models. Accurate estimates are
therefore crucial. However, in the literature, it is mentioned that obtaining such estimates
is difficult.

In this thesis, we show how to optimally design the input signal and degrees-of-
freedom of the set-up used in Pressure Oscillation experiments. We developed an al-
gorithm that finds the minimal experiment time while nonetheless satisfying a-priori set
parameter accuracy constraints and input amplitude bounds. In particular, we compared
two input-output measurement configurations, and found that one delivers much shorter
experiment times under the same constraints. This result traces back to an identifiability
issue in one of the measurement configurations.
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9.2 Recommendations for future research
Linear Partial Differential Equations with Spatially-Dependent Coefficients

In this thesis Distributed Parameter Systems governed by linear PDEs with spatially-
independent coefficients have been considered. It will be interesting to generalise the
theory to systems governed by linear PDEs in which the coefficients are spatially depen-
dent. In this case, single-input single-output systems no longer suffice to estimate all
physical parameters as identifiability issues arise. Instead, multiple-input multiple-output
or single-input multiple-output systems should be considered.

Pressure Oscillation Experiments on a Real Set-Up

The theoretical and numerical results in Chapter 7 on Pressure Oscillation experiments
should be validated in practice on an actual experiment set-up. Since there is in principle
no limitation on the number of Pressure Oscillation experiments that can be performed
in a lab, one can easily test the theoretical results from this thesis. This would be a safe
environment to test the potential of experiment design on a relevant real-life problem.

Networks and MIMO Systems

The ability to extend Experiment Design to networks and MIMO systems is a difficult but
important step. Currently, the majority of the literature considers SISO systems, although
some work has been done on MIMO systems (Barenthin et al. (2008)). Theoretical analy-
sis and software to compute optimal input signals in a MIMO or network setting are needed
to push the field of Experiment Design forward. Furthermore, using Stealth Identification
for identification in networks can be very useful as the number of unknown parameters
that need to be estimated can then be drastically reduced. Indeed, by adding the Stealth
component to the closed loop, all the feedback from the output to the input signal need not
be known. In other words, the unknown parameters in the feedback transfer functions do
not need to be estimated. This can lead to e.g. much shorter experiment lengths or less
powerful excitation signals.

In this thesis it has been shown that the Direct and Indirect Identification Methods
can lead to entirely different inverse covariance matrices. As a consequence, the required
experiment length between these two methods can differ drastically under the same pa-
rameter accuracy constraints (see Chapter 7). In networks the freedom to select the input
and output for identification is in principle enormous.

Suppose a particular transfer function G(z,θ0) has to be identified in the network with
minimum cost, using Experiment Design. Then the following steps can be considered:

1. Identify all input-output combinations that lead to a consistent estimate of θ0

2. Formulate the LCED optimisation problem for each combination and compute the
optimal input signals

3. Select the best solution from the set of solutions

It would be interesting to test these steps on a simple network and see how much the
experiment costs can differ when using different input-output combinations. To compute
all these spectra in a reasonable time, the current numerical codes need to be optimised as
much as possible.



164 Chapter 9 Conclusions

Linear Parameter Varying Systems

In this thesis linear systems have been considered. Extending the Experiment Design
method to nonlinear systems is a difficult step. As an intermediate step, research into Ex-
periment Design in Linear Parameter Varying Systems should be considered. This brings
the field into an entirely new domain and many physical systems can then also be anal-
ysed. It would be very interesting to generalise the Stealth and Sensitivity method to such
systems, both for structured and unstructured systems.
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Summary

Experiment Design for Identification of Structured Linear Systems

M.G. Potters

Experiment Design for system identification involves the design of an optimal input
signal with the purpose of accurately estimating unknown parameters in a system.

Specifically, in the Least-Costly Experiment Design (LCED) framework, the optimal in-
put signal results from an optimisation problem in which a weighted input power (the cost)
is minimised subject to parameter accuracy constraints. In this particular formulation, the
problem is convex and can be solved with efficient numerical tools. The LCED framework,
however, has the following limitations: (i) no interpretation follows from its numerical so-
lutions, (ii) it can not be applied to systems with unknown or nonlinear controllers, (iii) it
cannot be applied in full generality to structured (physical) systems, and (iv) the problem
formulation has so far mainly considered input power as the cost, whereas other possibili-
ties exist. In this thesis these four limitations are addressed.

Firstly, we calculate analytical solutions for a class of LCED problems for models with
one or two parameters. For uni-parametric models we have proven that the solution is
always a single sinusoid, whereas for bi-parametric models we have provided arguments
that a single sinusoid is often the solution. From our theoretical analysis we also, at a
formal level, classify the LCED problems as generalised and weighted dual E-optimality
problems.

Secondly, we introduce Stealth and Sensitivity methods that enable the applicability
of the LCED framework to structured and unstructured systems regulated by unknown or
nonlinear controllers. The requirement of an explicit and known expression of the sensitiv-
ity function, necessary to solve the LCED problems, is circumvented with the above two
novel methods. The Stealth method adapts the classical Direct Identification scheme such
that the controller does not sense the excitation signal, reducing the sensitivity function
to unity. The Sensitivity method, instead, relies on the usual Direct Identification scheme
and finds an approximation of the sensitivity function. Three numerical studies show the
strength of both methods.
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Thirdly, we generalise the LCED framework such that it can be applied to structured
systems governed by linear partial differential equations with constant coefficients. We
use a systematic approach to simulate such systems using harmonic signals, which in
turn are designed by the LCED framework. Issues such as stability and scaling will be
formally addressed. Since structured systems are concomitant with degrees of freedom
in the experiment set-up, we also develop a progressive subdivision algorithm that can
efficiently solve the corresponding LCED problems.

Fourthly, we introduce the novel Minimum Experiment Time (MET) algorithm that,
by designing an optimal harmonic input signal, solves an optimisation problem formulated
by Ebadat et al. (2014b): minimise the experiment time subject to parameter accuracy
constraints and amplitude bounds on the input and output signal. The MET algorithm is
applicable to systems that are in open or closed loop, and is relevant for many industrial
processes. It can also deal with multiple accuracy constraints, in contrast to traditional
methods. We show with several examples that optimal experiment times can be achieved
that are up to 50% shorter compared with the solutions of the classical LCED framework.

Finally, using the above methods, we address an important problem in petrophysics:
the estimation of permeability and porosity values of a porous rock sample using Pressure
Oscillation experiments. We show how to design the optimal input spectrum and inlet and
outlet volumes of the experiment set-up such that the experiment time is minimised, while
respecting parameter accuracy and actuator constraints. Furthermore, we design such sig-
nals for the Direct and Indirect identification methods. We show that identifiability issues
can arise with the former method. The latter method has no such issues. Consequently,
the Indirect method delivers optimal experiment times that are a factor fourteen shorter
compared with those of the Direct Method.



Samenvatting

Experiment Ontwerp voor de Identificatie van Gestructureerde Lineaire Systemen

M.G. Potters

Experiment ontwerp voor systeemidentificatie bestaat uit het ontwerpen van een opti-
maal ingangssignaal met als doel het nauwkeurig schatten van onbekende parameters

van een systeem. In het zgn. Least-Costly Experiment Design (LCED) raamwerk volgt het
optimale ingangssignaal uit een optimalisatieprobleem waarin een gewogen vermogen van
het ingangssignaal wordt geminimaliseerd onder kwaliteitsvoorwaarden op de parameter-
schattingen. Met deze formulering is het optimalisatieprobleem met convexe numerieke
methodes op te lossen. Het LCED raamwerk kent echter de volgende beperkingen: (i) de
numerieke oplossingen hebben geen fysische interpretatie, (ii) het kan niet worden toe-
gepast op systemen met onbekende en niet-lineaire regelaars, (iii) het kan niet worden
toegepast op generieke gestructureerde (fysische) systemen, en (iv) de te minimaliseren
functie in het LCED optimalisatieprobleem is tot nu toe met name gedefinieerd als een
gewogen vermogen van het ingangssignaal, terwijl andere functies betere alternatieven
kunnen zijn. Dit proefschrift behandelt de vier bovenstaande beperkingen.

Ten eerste worden in dit proefschrift analytische oplossingen berekend voor een klasse
van LCED problemen met één of twee onbekende parameters. Voor het eerste type mo-
del bewijzen we dat de oplossing altijd gegeven is door een enkele sinus, terwijl voor het
tweede type dit niet altijd het geval is. De theoretische analyse heeft ook geleid tot de
formele classificering van het LCED probleem: het is een duaal van een gegeneraliseerde
en gewogen E-optimaliteit probleem.

Ten tweede zijn er de Stealth en Sensitivity methodes ontwikkeld die het toepassen
van het LCED raamwerk op systemen met onbekende of niet-lineaire regelaars mogelijk
maakt. De voorwaarde van het kennen van een expliciete en bekende uitdrukking van de
sensitivity function, benodigd voor het oplossen van de LCED problemen, wordt omzeild
met de twee nieuwe methodes. De Stealth methode past de klassieke Directe Identifica-
tie methode zodanig aan dat de regelaar het excitatie signaal niet opmerkt, waardoor de
sensitivity function effectief gelijk is aan één. De Sensitivity methode, daarentegen, maakt
gebruik van de klassieke Directe Identificatie methode om de sensitivity function te schat-

175



176 Samenvatting

ten. Drie numerieke studies tonen de kracht van beide methodes aan.
Ten derde wordt het LCED raamwerk gegeneraliseerd zodat het toegepast kan wor-

den op gestructureerde systemen gedreven door lineaire partiële differentiaalvergelijkin-
gen met constante coëfficiënten. Met een systematische aanpak simuleren we dit type sys-
temen door gebruik te maken van een som van een harmonische functies, welke optimaal
ontworpen worden in het LCED raamwerk. Stabiliteit en schaling worden formeel aange-
pakt. Doordat gestructureerde systemen voorkomen in samenhang met vrijheidsgraden in
de experimentele opstelling, is in dit proefschrift een progressief onderverdelingsalgoritme
ontwikkeld dat de bijbehorende LCED problemen efficiënt kan oplossen.

Ten vierde bevat dit proefschrift het nieuwe Minimale Experiment Tijd (MET) algo-
ritme dat, door middel van het ontwerpen van een optimale som van harmonische functies,
het volgende optimalisatie probleem (zoals geformuleerd in (Ebadat et al. (2014b))) oplost:
minimaliseer de experimenttijd onder beperkingen op de kwaliteit van de parameter schat-
tingen en het systeem. Het MET algoritme is toepasbaar op (on)gestructureerde open- en
gesloten-lus systemen, en is relevant voor veel industriële processen. Het kan tevens meer-
dere beperkingen op de kwaliteit van parameterschattingen aan, in tegenstelling tot eerder
gepubliceerde methodes. Verschillende voorbeelden tonen aan dat optimale experimen-
teertijden bereikt kunnen worden die tot 50% korter zijn dan de oplossingen die volgen uit
het klassieke LCED raamwerk.

Tenslotte passen we enkele van de bovenstaande nieuwe methodes toe om een belang-
rijk probleem in petrofysica op te lossen. Het betreft het schatten van de permeabiliteit en
porositeit van een poreus monster door middel van Druk-Inducerende experimenten. In
dit proefschrift minimaliseren we de tijd van dit experiment onder kwaliteitsvoorwaarden
van de parameterschattingen door het berekenen van het optimale ingangssignaal, alsook
de optimale inlaat en uitlaat volumes van de experimentele opzet. Deze optimale signa-
len en volumes worden uitgerekend voor de Directe en Indirecte identificatie methodes.
Er wordt bewezen dat identificeerbaarheid een probleem is voor de eerste methode. De
tweede methode heeft dit probleem niet. De optimale experimenteertijden voor de tweede
methode zijn hierdoor een factor veertien korter ten opzichte van de eerste methode.
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