A piecewise affine approach to nonlinear performance

Sérgio Waitman Gérard Scorletti, Laurent Bako, Paolo Massioni

Laboratoire Ampère

PhD Club 25 novembre 2015

イロン イロン イヨン イヨン 三日

1/18

Context

Since the 90s \rightarrow important theoretical and methodological developments in control theory

- Emergence of robust control methods
- \blacktriangleright Appearance of efficient solvers \rightarrow optimization problems

Systematically tackle a large number of engineering specifications for linear systems

Tight specifications \rightarrow non negligible nonlinear effects

Engineering expertise (heuristics) \rightarrow no *a priori* guarantees

Need to develop efficient methods for nonlinear **performance** analysis

Context

Extension of robust control to nonlinear systems

- Most of the literature concerns stability
 - $\,\hookrightarrow\,$ Not able to guarantee some qualitative specifications
- Proposal of incremental stability
- ► For linear systems: stability = incremental stability

Complexity of necessary and sufficient conditions for nonlinear systems

 $\,\hookrightarrow\,$ Development of relaxed sufficient conditions \rightarrow conservatism

Reduce conservatism \rightarrow piecewise affine representations

- Describe a wide range of nonlinear system dynamics
- \blacktriangleright Similar to linear systems \rightarrow extension of efficient techniques

Typical control problem

Engineering specifications

- Stability
- Tracking
- Disturbance rejection
- Robustness

Typical control problem

Engineering specifications

- Stability
- Tracking
- Disturbance rejection
- Robustness

 $\begin{matrix} \mathsf{linear systems} \\ \downarrow \\ H_\infty \text{ control} \end{matrix}$

Independence of initial conditions

NL: Does stability imply qualitative properties?

NL: Does stability imply qualitative properties?

Oscillating response to constant input

NL: Does stability imply qualitative properties?

Oscillating response to constant input

Need of a stronger notion of stability

(□) (圖) (필) (필) (필) (④) (0) 6/18

Towards nonlinear H_{∞} control

Towards nonlinear H_{∞} control

 $\begin{array}{l} \mathcal{L}_2\text{-}\mathsf{gain} \text{ proposed as a natural candidate} \rightarrow \\ \text{energetic ratio between} \\ \text{input and output} \end{array}$

 \mathcal{L}_2 -gain

$$\exists \gamma \ / \ orall w : \qquad \int_0^\infty \|z(t)\|^2 \ dt \leq \gamma^2 \int_0^\infty \|w(t)\|^2 \ dt$$

$$\xrightarrow{w(t)} \Sigma \xrightarrow{z(t)}$$

	LTI	NL
$\downarrow Specs \setminus Norm \rightarrow$	H_{∞}	\mathcal{L}_2 –gain
Constant input \longrightarrow constant output	YES	NO
T periodic input \longrightarrow T periodic output	YES	NO
Unique steady state	YES	NO
Convergence of the unperturbed motions	YES	NO

$$\exists \eta \ / \ orall w, ilde w: \qquad \int_0^\infty \lVert z(t) - ilde z(t)
Vert^2 \ dt \leq \eta^2 \int_0^\infty \lVert w(t) - ilde w(t)
Vert^2 \ dt$$

<ロ> < (日) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1)

	LTI	NL	NL
$\downarrow Specs \setminus Norm \to$	H_{∞}	\mathcal{L}_2 –gain	Incremental \mathcal{L}_2 –gain
Constant input \longrightarrow constant output	YES	NO	YES
T periodic input \longrightarrow T periodic output	YES	NO	YES
Unique steady state	YES	NO	YES
Convergence of the unperturbed motions	YES	NO	YES

 $\begin{array}{cc} \mathcal{L}_2\text{-gain stability is not enough} \longrightarrow & & \text{new proposal:} \\ & & \text{Incremental } \mathcal{L}_2\text{-gain} \end{array}$

$$\exists \eta \ / \ orall w, ilde w: \qquad \int_0^\infty \lVert z(t) - ilde z(t)
Vert^2 \ dt \leq \eta^2 \int_0^\infty \lVert w(t) - ilde w(t)
Vert^2 \ dt$$

Definitions

Incremental finite gain stability of a nonlinear operator $\Sigma : \mathcal{U} \longrightarrow \mathcal{Y}$ Definition $\exists \eta \geq 0 \mid \forall w, \tilde{w} \in \mathcal{U} :$

$$\left\| \Sigma(w)(t) - \Sigma(ilde{w})(t)
ight\|_{\mathcal{Y}} \leq \eta \left\| w(t) - ilde{w}(t)
ight\|_{\mathcal{U}}$$

Incremental input-to-state stability of a dynamical system $\dot{x} = f(x, w)$

Definition

 $\exists \beta \in \mathcal{KL}, \gamma \in \mathcal{K}_{\infty} \mid \forall x_{0}, \tilde{x}_{0}, \forall w, \tilde{w} :$

 $\left\|x(t, x_0, u(t)) - \tilde{x}(t, \tilde{x}_0, \tilde{u}(t))\right\| \leq \beta \big(\left\|x_0 - \tilde{x}_0\right\|, t\big) + \gamma \big(\left\|w - \tilde{w}\right\|_{\infty}\big)$

Properties

- Constant input \rightarrow constant output
- ► *T*-periodic input → *T*-periodic output
- Unique steady state / Convergence of the unperturbed motions

(日) (同) (三) (三)

3

10/18

Dissipativity framework

Dissipative systems

A system Σ is said to be dissipative with respect to the supply rate s(w, z) if there exists a nonnegative storage function S such that

$$S(x(t_0)) + \int_{t_0}^{t_1} s(w(t), z(t)) dt \ge S(x(t_1)), \quad \forall t_1 \ge t_0 \ge 0$$

For \mathcal{L}_2 -gain stability:

$$s(w,z) = \gamma^2 \|w(t)\|^2 - \|z(t)\|^2$$

Incremental dissipativity

Nonlinear system \Rightarrow Fictitious augmented system

$$\begin{cases} \dot{x} = f(x, w) \\ z = h(x, w) \\ x(0) = x_0 \end{cases} \Rightarrow \begin{cases} \dot{x} = f(x, w) \\ \dot{\tilde{x}} = f(\tilde{x}, \tilde{w}) \\ \bar{z} = h(x, w) - h(\tilde{x}, \tilde{w}) \end{cases} \tilde{x}(0) = x_0$$

$$S(x(t_0), \tilde{x}(t_0)) + \int_{t_0}^{t_1} \eta^2 \|w(t) - \tilde{w}(t)\|^2 - \|z(t) - \tilde{z}(t)\|^2 dt \ge S(x(t_1), \tilde{x}(t_1))$$

$$\forall t_1 \ge t_0 \ge 0$$

Sufficient conditions

Differential version

A system Σ is said to be dissipative with respect to the supply rate s(w, z) if there exists a differentiable storage function S such that

$$\dot{S}(x(t),w(t))-s(w(t),z(t))\leq 0$$

Quadratic functions (with $P = P^T \succ 0$):

• For \mathcal{L}_2 -gain stability:

$$S(x) = x^T P x$$

▶ For incremental *L*₂-gain stability

$$S(x,\tilde{x}) = (x-\tilde{x})^T P(x-\tilde{x})$$

 $\label{eq:Relaxation} \mathsf{Relaxation} \rightarrow \mathsf{Sufficient} \ \mathsf{conditions} \rightarrow \mathsf{Upper} \ \mathsf{bound} \rightarrow \mathsf{Conservatism}$

 \hookrightarrow Piecewise Affine (PWA) representation

PWA representation

PWA regional representation

$$\begin{cases} \dot{x}(t) = A_i x(t) + a_i + B_i w(t) \\ z(t) = C_i x(t) + c_i + D_i w(t) \\ x(0) = x_0 \end{cases} \text{ for } x(t) \in X_i$$

Allows to:

- describe systems with saturations, relays, dead zones, etc.
- \blacktriangleright embed more generic nonlinear systems \rightarrow differential inclusions
- assess performance with less conservatism

-0.5

-1.5

-2 -2.5

-0.3 -0.2 -0.1

Finer computation of the upper bound to the \mathcal{L}_2 -gain

Incremental \mathcal{L}_2 -gain of PWA systems

► Works of Romanchuk → Upper bound to the incremental L₂-gain of PWA systems by means of a global quadratic function

$$S(x, \tilde{x}) = (x - \tilde{x})^T P(x - \tilde{x})$$

 \blacktriangleright Our proposal \rightarrow Continuous piecewise quadratic storage functions

$$S(x, \tilde{x}) = \bar{x}^T P_{ij} \bar{x}$$
, for $\bar{x} \in X_{ij}$

with

$$ar{x} = egin{bmatrix} x^{\mathcal{T}} & \widetilde{x}^{\mathcal{T}} & 1 \end{bmatrix}^{\mathcal{T}}$$

and

$$X_{ij} = \{(x, \tilde{x}) \mid x \in X_i, \tilde{x} \in X_j\}$$

One dimensional example

with

$$\phi(e) = egin{cases} h & e > rac{h}{\kappa} \ \kappa e & |e| \leq rac{h}{\kappa} \ -h & e < -rac{h}{\kappa} \end{cases}$$

Two dimensional example

A unique quadratic storage function assuring incremental stability does not exist

Incremental stability can be proven with piecewise quadratic storage functions

イロト イポト イヨト イヨト