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Abstract— A domain decomposition strategy is introduced in
order to solve time-harmonic Maxwell’s equations discretized by
a discontinuous Galerkin method. Its principles are explained for
a 2D model problem and its efficacy is demonstrated on 2D and
3D examples.

I. I NTRODUCTION

Discontinuous Galerkin (DG) methods are emerging for the
solution of time-harmonic Maxwell’s equations [1] because of
the enhanced flexibility compared to the conforming edge ele-
ment method [2]. For instance, by using a DG method, dealing
with non-conforming meshes is straightforward. Nonetheless,
before taking advantage of this flexibility, the design of effi-
cient solution algorithms has to be addressed. Here we propose
a domain decomposition (DD) strategy based on optimized
Schwarz methods [3].

First, the DD strategy is introduced in the two-domain
case for a 2D transverse electric model problem. Then the
discretization of the problem by a DG method is briefly com-
mented. Finally, numerical results for a 2D problem confirm
the expected theoretical behavior of the DD method and 3D
numerical experiments on a simple geometry pave the way for
more realistic applications.

II. T HE DOMAIN DECOMPOSITION STRATEGY

For the sake of simplicity we consider the following trans-
verse electric model problem in a domainΩ ⊂ R2:

Find the electromagnetic field(E,H) satisfying:
iωεE− curlH = 0, in Ω,
iωµH + curlE = 0, in Ω,
n× (E−Einc) + (H−Hinc) = 0, on ∂Ω.

(1)

The parametersε and µ denote respectively the dielectric
permittivity and the magnetic permeability,ω the angular
frequency,n the unitary outgoing normal and(Einc,Hinc) the
components of an incident electromagnetic wave.

For solving (1), the domainΩ is decomposed in two non-
overlapping subdomainsΩ1 andΩ2. The common interface to
Ω1 andΩ2 is denoted byΓ. The DD strategy is then a variant
of the classical Schwarz method:

• We start with an initial electromagnetic field(E0
l ,H

0
l ) on

each subdomainΩl, l = 1, 2.
• The (p+1)-th iterate(Ep+1

l ,Hp+1
l ) is the solution of (1)

restricted to the subdomainΩl augmented by an interface

transmission condition onΓ of the form:{
n× (Ep+1

l −Ep
m) + Si(H

p+1
l −Hp

m) = 0,
with Sl = αl + βl∂

2
τ ,

(2)

where∂2
τ denotes the second order derivative along the

interface. The operatorSl ensures the transmission of the
field (Ep

m,Hp
m) computed at the previous iteration in the

neighbor subdomainm with the parametersαl and βl

properly chosen.
• The limit of the sequence(Ep

l ,H
p
l )p∈N is the restriction

to Ωl of (E,H) the solution of (1). Thus, we can use a
stopping criterion:

2∑
l=1

‖(Ep+1
l ,Hp+1

l )− (Ep
l ,H

p
l )‖

‖(E1
l ,H

1
l )− (E0

l ,H
0
l )‖

< tol, (3)

wheretol is the prescribed accuracy and‖ · ‖ a norm.
Despŕes in [4] was the first to propose this strategy for time-

harmonic equations with the choiceSl = 1, for l = 1, 2;
it coincides with a first order absorbing boundary condition.
However, the convergence rate of the iterative process with
this boundary condition is strongly dependent on the mesh
size used for the discretization and the convergence to the
solution can be slow.

Nonetheless, it is possible to greatly improve the conver-
gence rate by optimizing it with respect to the coefficientsαl

andβl of (2). This theoretical study is done in [5] directly on
(1) and in [6] for the second ordercurl curl formulation.

The closed-form expressions obtained for the coefficients
αl andβl are in particular dependent of the mesh size and of
the size of the subdomain. These expressions are then used in
a DD strategy generalized to more than two subdomains.

III. D ISCRETIZATION OF THE PROBLEM

For the discretization of the problem onΩ or on each
subdomain, a DG method is used. Let us suppose that the
domain is decomposed into a set of simplicesTh such that
∪K∈Th

K = Ω. The approximate solution(Eh,Hh) of (1) is
an element ofV 3

h where Vh is the finite element space of
square-integrable discontinuous scalar field whose restriction
to an elementK is polynomial of degreek:

Vh =
{
V ∈ L2(Ω) | ∀K ∈ Th, V|K ∈ Pk(K)

}
. (4)

Thus no particular continuity constraint is enforced at the
interfaces between elements. In order to keep the consistency
of the discretization, some numerical flux has to be defined
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on these interfaces weakly enforcing the continuity of the
components of the electric and magnetic fields tangential to
the interface [7].

IV. N UMERICAL RESULTS

A. Two-dimensional problem

A theoretical convergence rateρ depending on the mesh size
h is deduced from the analysis in [5]. This analysis is done on
the continuous,i.e. without discretization, DD method but we
can check that the results remain valid with a discretization.
In the 2D case, two particular choices of some parametersp1

and p2, leading to a concise expression ofρ, are reported in
Tab. I and thenαl is equal to(iω)−1(pl + ipl) andβl is zero.
The coefficientCω in Tab. I is set for a givenω; a precise
definition of its role can be found in [5].

TABLE I

CONVERGENCE RATE AND TRANSMISSION CONDITION PARAMETERS.

Case ρ p1 p2

A 1−
√

2C
1
4
ω√

π

√
h

√
πC

1
4
ω√

2
√

h

√
πC

1
4
ω√

2
√

h

B 1− C
1
8
ω

π
1
4

h
1
4 π

1
4 C

1
8
ω

2h
1
4

π
3
4 C

1
8
ω

h
3
4

The agreement between the theoretical and numerical con-
vergence rates is demonstrated on a problem withΩ =]0; 1[2,
(Einc

x ,Einc
y ,Hinc) = exp(−iωx)(0, 1, 1) and ω = 2π. The

DG discretization is based on a triangular uniform mesh with
P1(K) as the local space in (4). On Fig. 1, the number of
iterations for achieving a prescribed accuracy against the mesh
size is shown for both boundary conditions (Case A and Case
B). The curves fit nicely the dependence inh predicted by the
theory i.e. it behaves likeh−0.5 for Case A and likeh−0.25

for Case B.
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Fig. 1. Number of iterations against the mesh sizeh. Logarithmic scale.

B. Three-dimensional problem

The implementation of optimized interface conditions for
3D time-harmonic Maxwell’s equations is a work in progress.
Here, we give preliminary results for the DD strategy based

on first order absorbing boundary conditions as transmission
conditions.

The problem under consideration is the scattering of a plane
wave by a perfectly conducting unit sphere. The incident
wave is given byEinc = (exp(−iωx), 0, 0) and Hinc =
(0, exp(−iωx), 0), with ω = 4π. The absorbing boundary is
set to one wavelength from the surface of the perfectly con-
ducting sphere. The mesh is composed of 1,382,400 tetrahedra
and aP0(K) local space is used for the DG method. The total
number of unknowns is 8,294,400.

Numerical experiments are conducted on a cluster of 64
AMD Opteron/2 GHz processors with a Gigabit Ethernet inter-
connection. One subdomain is associated to each processor and
a sparse matrix direct method is used to solve the subdomain
problem. As it is explained in [3], the DD method can be
formulated as a linear system whose unknowns are auxiliary
interface variables. This interface system is usually solved by
a Krylov method which gives more robustness to the DD
strategy. Here we make use of a BiCGstab(l) Krylov method
[8] either for solving the interface system or as a global solver
without preconditioner.

Performance results are given in Tab. II where ’DDM’
refers to the DD solution strategy. The time per processor for
performing the factorization is 18.0 sec (min)/102.0 sec (max)
while the associated memory usage is 405 MB (min)/1001 MB
(max). In addition to the gain in computing time, a clear
advantage of the DD strategy is its parallel efficacy that can
be evaluated here as the ratio of ’CPU (max)’ over ’Elapsed’
which is equal to 92% while the corresponding feature for the
global solver is 74%.

TABLE II

PERFORMANCE RESULTS. ’CPU (MIN /MAX )’ ARE MEASURES PER

PROCESSOR OF THECPU TIME . ’ELAPSED’ IS THE ELAPSED TIME.

Solver CPU (min) CPU (max) Elapsed
Global 1940.0 sec 2142.0 sec 2919.0 sec
DDM 259.0 sec 413.0 sec 449.0 sec
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