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Abstract—A domain decomposition strategy is introduced in transmission condition o' of the form:
order to solve time-harmonic Maxwell's equations discretized by p+1 p+1 _
a discontinuous Galerkin method. Its principles are explained for { .X (El - E7) ‘5 Si(Hl —H7,) =0, 2)
a 2D model problem and its efficacy is demonstrated on 2D and with S; = oy + 510z,

3D examples. S
P where ? denotes the second order derivative along the

interface. The operatd$; ensures the transmission of the
l. INTRODUCTION field (EP ,HP ) computed at the previous iteration in the

neighbor subdomaim: with the parametersy and j;
Discontinuous Galerkin (DG) methods are emerging for the  properly chosen.

solution of time-harmonic Maxwell’s equations [1] because of , The limit of the sequencéE?, HP),y is the restriction
the enhanced flexibility compared to the conforming edge ele- to (), of (E, H) the solution of (1). Thus, we can use a
ment method [2]. For instance, by using a DG method, dealing  stopping criterion:

with non-conforming meshes is straightforward. Nonetheless,

before taking advantage of this flexibility, the design of effi- Z By 1Y) — (EP, HD)|
cient solution algorithms has to be addressed. Here we propose I E}, Hl) (E{, HY)||

a domain decomposition (DD) strategy based on optimized

Schwarz methods [3]. wheretol is the prescribed accuracy afid || a norm.

First, the DD strategy is introduced in the two-domain Despgs in [4] was the first to propose this strategy for time-
case for a 2D transverse electric model problem. Then tharmonic equations with the choic& = 1, for [ = 1,2;
discretization of the problem by a DG method is briefly conit coincides with a first order absorbing boundary condition.
mented. Finally, numerical results for a 2D problem confirlowever, the convergence rate of the iterative process with
the expected theoretical behavior of the DD method and 3bis boundary condition is strongly dependent on the mesh
numerical experiments on a simple geometry pave the way gize used for the discretization and the convergence to the

more realistic applications. solution can be slow.
Nonetheless, it is possible to greatly improve the conver-

gence rate by optimizing it with respect to the coefficiemts
and g; of (2). This theoretical study is done in [5] directly on
For the sake of simplicity we consider the following transfl) and in [6] for the second ordenrl curl formulation.
verse electric model problem in a doma&nc R2: The closed-form expressions obtained for the coefficients
«; and g, are in particular dependent of the mesh size and of
the size of the subdomain. These expressions are then used in
(1) a DD strategy generalized to more than two subdomains.

< tol, 3)

Il. THE DOMAIN DECOMPOSITION STRATEGY

Find the electromagnetic fiel@E, H) satisfying:
iweE — curlH =0, in Q,
iwpH + curl E =0, in Q,

n x (B —E%) + (H - H*) =0, on o I1l. DISCRETIZATION OF THE PROBLEM

The parameterg and p denote respectively the dielectric For the discretization of the problem of or on each
permittivity and the magnetic permeability, the angular subdomain, a DG method is used. Let us suppose that the
frequencyn the unitary outgoing normal an@®™°, H") the domain is decomposed into a set of simplidgs such that
components of an incident electromagnetic wave. Ugxer, K = Q. The approximate solutiofE;,, Hy,) of (1) is

For solving (1), the domaif is decomposed in two non-an element ofV;> where V;, is the finite element space of
overlapping subdomain@; and(2,. The common interface to square-integrable discontinuous scalar field whose restriction
Q, and, is denoted by". The DD strategy is then a variantio an elementx is polynomial of degreé:
of the classical Schwarz method:

« We start with an initial electromagnetic fie{®?, H?) on
each subdomaify;, [ =1, 2. Thus no particular continuity constraint is enforced at the

e The(p+1)-th iterate(Ef’“,Hf“) is the solution of (1) interfaces between elements. In order to keep the consistency
restricted to the subdomaf®, augmented by an interfaceof the discretization, some numerical flux has to be defined

Vi, ={V eL*Q)|VK €Ty, VixeP(K)}. (4)
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on these interfaces weakly enforcing the continuity of then first order absorbing boundary conditions as transmission

components of the electric and magnetic fields tangential ¢onditions.

the interface [7]. The problem under consideration is the scattering of a plane
wave by a perfectly conducting unit sphere. The incident

IV. NUMERICAL RESULTS wave is given byE™ = (exp(—iwr),0,0) and H™®

(0, exp(—iwz),0), with w = 47. The absorbing boundary is

) ) _ set to one wavelength from the surface of the perfectly con-

A theoretical convergence rapedepending on the mesh sizeqcting sphere. The mesh is composed of 1,382,400 tetrahedra

h'is deduced from the analysis in [5]. This analysis is done Qg ap, (K local space is used for the DG method. The total
the continuousi.e. without discretization, DD method but wen mber of unknowns is 8,294,400.

In the 2D case, two particular choices of some parameters AMD Opteron/2 GHz processors with a Gigabit Ethernet inter-
and p;, leading to a concise expression @fare reported in connection. One subdomain is associated to each processor and
Tab. | and theny, is equal to(iw) ™' (p; +ip) and B, is zero. 4 sparse matrix direct method is used to solve the subdomain
The coefficientC,, in Tab. | is set for a givenu; a precise problem. As it is explained in [3], the DD method can be
definition of its role can be found in [5]. formulated as a linear system whose unknowns are auxiliary
interface variables. This interface system is usually solved by
a Krylov method which gives more robustness to the DD
strategy. Here we make use of a BiCGgtatKrylov method

A. Two-dimensional problem

TABLE |
CONVERGENCE RATE AND TRANSMISSION CONDITION PARAMETERS

Case P 1 P2 [8] either for solving the interface system or as a global solver
T T T H H™S
A | 1o vEed gy | vEed | yEed without preconditioner. . . , ,
S 2v/n 27/ Performance results are given in Tab. Il where 'DDM
B 1— C¢pt mi6) | zidd refers to the DD solution strategy. The time per processor for
T4 2h4 h4

performing the factorization is 18.0 sec (min)/102.0 sec (max)

while the associated memory usage is 405 MB (min)/1001 MB

?Hfax). In addition to the gain in computing time, a clear

advantage of the DD strategy is its parallel efficacy that can
e evaluated here as the ratio of 'CPU (max)’ over 'Elapsed’
hich is equal to 92% while the corresponding feature for the
SI‘%bal solver is 74%.

The agreement between the theoretical and numerical ¢
vergence rates is demonstrated on a problem Qith]0; 1[2,
(EiwnC,ELnC,Hinc) = exp(—iwz)(0,1,1) and w = 2m. The
DG discretization is based on a triangular uniform mesh wi
Py (K) as the local space in (4). On Fig. 1, the number
iterations for achieving a prescribed accuracy against the m

size is shown for both boundary conditions (Case A and Case TABLE I
B). The curves fit nicely the dependencefimpredicted by the PERFORMANCE RESULTS'CPU (MIN/MAX)’ ARE MEASURES PER
theory i.e. it behaves likeh =0 for Case A and likeh =02 PROCESSOR OF THEPUTIME. 'ELAPSED' IS THE ELAPSED TIME
for Case B. Solver | CPU (min) | CPU (max)| Elapsed
Global | 1940.0 sec| 2142.0 sec| 2919.0 sec
Number of iterations against the mesh size. ® = 2 m. DDM 259.0 sec 413.0 sec 449.0 sec

w05
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