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Abstract

The main purpose of this thesis is to propose a new framework that
connects Prediction Error Identification and Robust Control Theory.
Prediction error identification using an unbiased model structure deliv-
ers an estimated model for the true plant and a confidence ellipsoid for
its parameter vector. This model information can be obtained either
through direct identification of the system or through the identifica-
tion of the model error, and the identification itself can be performed
either in open loop or in closed loop. The ellipsoidal parametric uncer-
tainty region U contains the parameters of the true system at a certain
probability level that we can fix at, say, 95%; and defines an equivalent
uncertainty region D in the space of transfer functions. Such uncertainty
description is different from the classical frequency domain uncertainty
descriptions used in robust control analysis and design. However, our
results connect these two sets of tools in a coherent way. These results
cover two distinct aspects.

e The first aspect is “PE identification for robust control”. We
present a measure for the size of the uncertainty set D, result-
ing from prediction error identification, that is directly connected
to the size of the set of model-based controllers that is guaranteed
by the v-gap theory to stabilize all systems in this uncertainty set.
This allows us to establish that one uncertainty set is better tuned
for robust control design than another, leading to guidelines for
the design of the identification experiment.

e The second aspect is “controller validation”. We develop a neces-
sary and sufficient condition for a specific controller to stabilize all
systems in D and we present an optimization problem that com-
putes exactly the worst case performance achieved by a controller
over all systems in an uncertainty set D delivered by prediction
error identification.
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This thesis presents also results (restricted to linearly parametrized
systems) about the image of the uncertainty set D in the Nyquist plane.
The image in the Nyquist plane of such a set of plants is made up of
ellipses at each frequency. However, the connection between different
frequencies makes the mapping nontrivial. We show that the probabil-
ity level linked to this image in the Nyquist plane is larger than that of
the confidence region in the parameter space. This is due to the fact
that the mapping between the parametric and frequency domain spaces
is not bijective.

In the last part of this thesis, we extend our framework to the case
of biased model structures, provided that the model structure is linearly
parametrized. For this purpose, we use the stochastic embedding as-
sumptions. First, we show that these assumptions allow one to construct
a frequency domain uncertainty region £ containing the true system at
a certain probability level, as well for open-loop as for closed-loop iden-
tification. Then, we show that a necessary and sufficient condition can
be found for the stabilization of all plants in £ by a given controller
and a procedure can be found to compute the worst case performance
achieved by a controller over all plants in L.
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This thesis is divided in ten chapters:

Chapter 1: Introduction

Chapter 2: Uncertainty region deduced from PE identifica-
tion with unbiased model structures

Chapter 3: A measure of robust stability for the uncertainty
region D

Chapter 4: A necessary and sufficient robust stability con-
dition for D

Chapter 5: Worst case performance in D
Chapter 6: Practical simulation examples

Chapter 7: Frequency domain image of a set of linearly
parametrized transfer functions

Chapter 8: Extension to biased model structures using
stochastic embedding

Chapter 9: Robustness analysis of £
Chapter 10: Conclusions

The material presented in Chapter 3 is to be published in

X. Bombois, M. Gevers, and G. Scorletti. A measure of
robust stability for a set of parametrized transfer functions.
To appear in IEEE Transactions on Automatic Control, De-
cember 2000.
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However, some results of this chapter (and of Chapter 2) can also be
found in

X. Bombois, M. Gevers, and G. Scorletti. Controller vali-
dation based on an identified model. In Proc. IEEE Con-
ference on Decision and Control, pages 2816-2821, Phoenix,
Arizona, 1999.

M. Gevers, X. Bombois, B. Codrons, F. De Bruyne, and
G. Scorletti. The role of experimental conditions in model
validation for control. In A. Garulli, A. Tesi, and A. Vicino,
editors, Robustness in Identification and Control - Proc. of
Siena Workshop, July 1998, volume 245 of Lecture Notes in
Control and Information Sciences, pages 72-86. Springer
Verlag, 1999.

The materials of Chapter 4 and Chapter 5 were (or are to be) published
in

X. Bombois, M. Gevers, G. Scorletti, and B.D.O. Anderson.
Controller validation for stability and performance based on
an uncertainty region designed from an identified model. In
CD-ROM Proc. IFAC Symposium on System Identification,
paper WePM1-6, Santa Barbara, California, 2000.

X. Bombois, M. Gevers, G. Scorletti, and B.D.O. Anderson.
Robustness analysis tools for an uncertainty set obtained by
prediction error identification. Revised version submitted
to Automatica, April 2000.

The material in Chapter 6 is an adaptation of the examples published in

B. Codrons, X. Bombois, M. Gevers, and G. Scorletti. A
practical application of recent results in model and con-
troller validation to a ferrosilicon production process. In
CD-ROM Proc. 39th Conference on Decision and Control,
paper WeP07-6, Sydney, Australia, 2000.
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M. Gevers, X. Bombois, B. Codrons, G. Scorletti, and
B.D.O. Anderson. Model validation for control and con-
troller validation: a prediction error identification approach.
Submitted to Automatica.

Note that this last paper summarizes Chapters 2 to 6. A preliminary
version of this summary can be found in

M. Gevers, X. Bombois, B. Codrons, F. De Bruyne, and
G. Scorletti. Model validation for robust control and con-
troller validation in a prediction framework. In CD-ROM
Proc. IFAC Symposium on System Identification, paper
WeAM1-1, Santa Barbara, California, 2000.

The material of Chapter 7 can be found in

X. Bombois, B.D.O. Anderson, M. Gevers. Frequency do-
main image of a set of linearly parametrized transfer func-

tions.  Submitted to the European Control Conference
(ECCO01), Porto, 2001.

A preliminary version of several parts of Chapters 8 and 9 can be found
in

X. Bombois, M. Gevers, and G. Scorletti. Controller vali-
dation for stability and performance based on a frequency
domain uncertainty region obtained by stochastic embed-
ding. In CD-ROM Proc. 39th Conference on Decision and
Control, paper TuMO06-5, Sydney, Australia, 2000.
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Chapter 1

Introduction

1.1 General objective

System identification is the scientific exercice that consists of determin-
ing a mathematical model of an underlying real-life process, the so-called
true system, based on observed data; and Prediction Error (PE) identifi-
cation is the method that is generally used to compute this mathematical
model. One of the major applications of the identified model is the de-
sign of a control law for the true system. During the last years, much
attention has been paid to tune identification for control design. Guide-
lines have been established in order to design identification experiments
delivering a model that is accurate for control design [38, 39, 75, 80, 2].
Most often, these guidelines have led to the design of iteratives schemes
[90, 3, 60, 69, 75, 80]. A common feature of these schemes is that iter-
ations are performed of model updates (by identification with the most
recent controller applied to the true system) and of model-based con-
troller updates (the controller design being based on the most recent
model). However, during the iterative procedure, there is no guarantee
that the controller designed from the identified model will form a stable
loop and achieve sufficient performance when this controller is applied
to the unknown true system.

In order to derive this guarantee, the framework of Robustness The-
ory, introduced in the early 80’s in [89, 31], is an elegant solution. This
framework consists of considering an uncertainty region (i.e. a set of
systems) that contains the true system, and to verify the stability and
performance properties over all systems in this uncertainty region. The

1



2 Introduction

introduction of robustness principles in identification for control has led
to robustified iterative schemes (see [81, 24]) where, at each iteration,
in addition to the design of a controller, a model and an uncertainty
region around this model is identified. The robustification requires thus
a method to identify a model and an uncertainty region, and robustness
tools to analyze this uncertainty set. As a consequence, we need frame-
works that connect PE identification and robustness theory.

In this thesis, we propose a new framework that connects PE iden-
tification and Robustness Theory. This framework consists in a new
method to design an uncertainty region using the tools of PE identifica-
tion, coupled with robustness tools that are adapted to this uncertainty
region. These robustness tools pertain both to the robusness analy-
sis of a controller and the quality assessment of the uncertainty region.
Our framework is deduced for PE identification with unbiased model
structure. However, we show that our robustness analysis tools can be
adapted to the case of PE identification with biased model structure.

1.2 Historical framework

The history of the considered problem is already very long. Indeed
the estimation of the error between the identified model and the true
system that may be the root of uncertainty region determination, is
as old as PE identification itself. A reputable engineer should never
deliver a product without a statement about its precision. However,
the information about this error was classically presented in the time-
domain via the cross-correlation between inputs and residuals. This
model error representation was thus a great distance from the classical
uncertainty descriptions used in mainstream Robustness Theory, namely
frequency domain uncertainty descriptions. As a consequence, a huge
gap appeared at the end of the 80’s between Robustness Theory and PE
identification as was evidenced in the 1992 Santa Barbara Workshop [76].
This huge gap drove the Control Community to develop new techniques,
different from PE identification, in order to obtain, from measured data,
a nominal model for control design and an uncertainty region containing
the true system. Several directions have been pursued:

e In set membership identification or the hard bound (or bounded
error) framework, uncertainty models have been derived under a
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variety of hard bound assumptions on the measurement noise and
on the impulse reponse of the true system: see e.g. [46, 45, 66].

e A second direction, initiated by Smith and Doyle [77], consists
of starting with an a priori uncertainty set resulting from prior
assumptions on the true system and on the noise, and of then using
observed input-output data to invalidate (and thus delete from
this prior set) those models that are found to be inconsistent with
these prior assumptions. Elaborations on this approach can be
found in [70, 56, 19, 16]. The concept of model invalidation, on the
basis of an observed incompatibility between a model (including its
uncertainty description and its assumed hard-bound on the noise)
and data, was extended to controller invalidation in [74].

These new techniques aimed at producing one of the standard linear
fractional frequency domain uncertainty regions that are generally used
in mainstream Robust Control Theory (such as additive, coprime factor
uncertainty regions). The drawbacks of these techniques are neverthe-
less the large amount of assumptions and, more fundamentally, the fact
that they are not based on the mainstream framework in System Iden-
tification i.e. PE identification.

Other approaches that are based on mainstream PE identification,
have also been investigated to design uncertainty regions from measured
data. They are interesting for our purpose since they are a first step
in the direction of the reconciliation between PE identification and Ro-
bustness Theory. The first approach is the Model Error Model (MEM)
approach proposed by L. Ljung in his plenary lecture at CDC 1997 [61]
(see also [62]). The stated goal of this approach was to replace the
time-domain information (i.e. the cross-correlation function between
inputs and residuals) on the model error by frequency domain informa-
tion, to suit the requirements of Robustness Theory. The key idea was
to estimate a model of the error between an a-priori given model and
the true system using a simple step of PE identification with unbiased
model structure. By virtue of the unbiased model structure, the error
is a variance error only, and an ellipsoid containing the “true parameter
vector” at a certain probability level can be constructed using the es-
timated covariance matrix of the parameters. In [61, 62], this ellipsoid
in parameter space was then transformed into ellipses at each frequency
in the Nyquist plane, using a first order approzimation of the mapping
between the parameter space and the Nyquist plane. These ellipses can
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be collected together to make up a frequency domain uncertainty region
made up of ellipses at each frequency.

Although the other approaches, Stochastic Embedding [48, 47] and
the methods presented in [49, 50, 87, 26], preceded the MEM approach,
they can nevertheless be considered as the extension of the MEM ap-
proach to the case of (linearly parametrized) biased model structures. In
Stochastic Embedding, the undermodeling is considered as the noise in
classical PE identification i.e. as the realization of a zero mean stochastic
process. Consequently, just as in the MEM approach, the total error is
a variance error only and ellipses at each frequency in the Nyquist plane
can be constructed and collected together to make up a frequency do-
main uncertainty region. The first order approximation is here avoided
by only considering linearly parametrized model structures. In the meth-
ods presented in [49, 50] and in [87, 26], the error due to the noise is
estimated in the same way as in the MEM and stochastic embedding
approaches, but the error due to the undermodeling is estimated using
an assumption about the decay rate of the impulse response of the true
system. These last two approaches can therefore be considered as mixed
probabilistic-deterministic approaches. The uncertainty region obtained
with these methods can also be represented as an uncertainty region
made up of ellipses at each frequency in the Nyquist plane.

In all these approaches (MEM, stochastic embedding and mixed
probabilistic-deterministic approaches), we obtain thus frequency do-
main uncertainty regions made up of ellipses at each frequency in the
Nyquist plane.

1.3 Contribution of this thesis

In this thesis, we will develop a framework that elegantly and efficiently
connects Robustness Theory and PE identification with unbiased model
structures, starting from the results in [61, 62]. This framework will
be extended for some of its aspects to PE identification with (linearly
parametrized) biased model structures using the stochastic embedding
assumptions.

The starting point for the framework developed in this thesis is two
observations we made about the MEM approach in [12]. The first obser-
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vation is that the identification of an unbiased model error model is not
the only way to construct uncertainty regions using this paradigm: an
easier way is the direct identification of an unbiased model for the true
system, and this in open-loop or in closed-loop. The second observation,
which is more fundamental, is that the first order approximation yield-
ing the ellipses in the Nyquist plane is a real drawback of the method,
since it introduces an error. In order to avoid this first order approxima-
tion, we decided in [12] to consider, as uncertainty region, the set D of
parametrized transfer functions corresponding to the ellipsoid in param-
eter space that is constructed with the estimated covariance matrix and
that contains the true parameter vector (at a certain probability level).

The first contribution of our work is thus to present uncertainty re-
gions D constructed with PE identification with unbiased model struc-
ture, without using any approximation or adding any further assump-
tions. This uncertainty region D contains the true system at a certain
probability level. We develop a procedure to compute such uncertainty
set for open-loop identification, different types of closed-loop identica-
tion methods, but also for the MEM approach, and we derive a general
expression for this uncertainty set valid for all these types of identifica-
tion. This general expression takes the form of a set of parametrized
transfer functions whose (real) parameter vector is constrained to lie in
an ellipsoid. The center of this uncertainty region is the “identified”
open-loop model.

The uncertainty region D is a “parametric” uncertainty region and
is thus totally different from the frequency domain uncertainty regions
that are generally used in mainstream Robust Control Theory. Due to
the huge amount of research accomplished in Robust Control Theory, a
lot of results have also been developed for parametric uncertainty sets
(see e.g. [34, 35,53, 72, 7,23, 4, 5]). Some of these results will help us to
develop robustness tools adapted to the uncertainty region D. However,
manipulations of D and new results will be necessary to obtain these
robustness tools (for more details see Chapters 4 and 5).

The second contribution of this thesis is therefore to furnish robust-
ness tools that are adapted to the uncertainty set D (i.e. without em-
bedding it in a classical uncertainty set as we first made in [12]). We
develop robust stability and robust performance analysis tools. The ro-
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bust stability analysis tool is a necessary and sufficient condition for the
stabilization of all plants in D by a given controller. This condition has
been deduced from the result of [53, 72] that gives such a condition for
an uncertainty set defined by a real vector and expressed in the general
LFT (Linear Fractional Transformation) framework of robust analysis.
Our contribution is to recast the closed-loop connections of all systems
in D with the considered controller as an LFT. The necessary and suf-
ficient robust stability condition for D follows then from the result of
[53, 72]. The robust performance analysis tool is an LMI'-based opti-
mization problem that we develop to compute exactly the worst case
performance achieved by a given controller over all plants in the uncer-
tainty set D.

A third contribution is to develop preliminary steps in the direc-
tion of “PE identification for robust control”. This is a design problem,
where our contribution is to characterize what quality an uncertainty
region D must possess for it to be tuned for robustly stable control de-
sign. We have indeed established a measure of size of the uncertainty
region D that is directly connected to the size of a set of model-based
controllers that stabilize all systems in D. This measure of size is the
worst case v-gap between the nominal model and the plants in D and is
an extention of the v-gap metric introduced in [84]. We show that this
worst case v-gap can be computed frequency-wise using an LMI-based
optimization problem at each frequency. We also show that the smaller
is the worst case v-gap between the model G,,,q and the uncertainty set
D, the larger is the set of G,,,q-based controllers that are guaranteed
to stabilize all systems in D. The worst case v-gap is thus an indicator
of how well an uncertainty set D is tuned for robustly stable controller
design based on G,,,q and can therefore be used to assess the quality
of the uncertainty set D obtained by a PE identification experiment.
Our result also gives a meaning to the concept of PE identification for
robust control: an identification experiment is “tuned for robust control
design” if the worst case v-gap for the uncertainty set delivered by this
experiment is small, because it implies that, for that uncertainty set, the
set of robustly stabilizing controllers is large. In that sense, although it
is restricted to stability purposes, our result is thus a first step in the di-
rection of the establishment of a link between identification experiment
design and controller robustness.

'Linear Matrix Inequality



Introduction 7

In our process of understanding the properties of the parametric
uncertainty region D, the representation (i.e. the image) of this uncer-
tainty region in the Nyquist plane is an interesting feature. Since the
analysis of the image of D for its general structure is quite complicated,
we limit our analysis to uncertainty sets where the plants are linearly
parametrized. The image in the Nyquist plane of such set of plants is
made up of ellipses at each frequency. However, the connection between
different frequencies makes the mapping nontrivial. We show that the
image in the Nyquist plane contains more plants than the parametric
uncertainty set. This is due to the fact that the mapping between the
parametric and frequency domain spaces is not bijective.

The last part of this thesis consists of extending our framework to
the case of PE identification with a biased model structure in the par-
ticular case where this model structure is linearly parametrized. For
this purpose, we use the stochastic embedding assumptions [48, 47].
The choice of the stochastic embedding method instead of the mixed
probabilistic-deterministic approaches [50, 26] to extend our framework
to biased model structures is quite arbitrary. It is nevertheless impor-
tant to note that the results we develop for the stochastic embedding
approach also apply to the mixed probabilistic-deterministic approaches
since the uncertainty regions delivered by all these methods are similar.

The uncertainty set deduced from an open-loop PE identification
procedure with stochastic embedding assumptions delivers an ellipsoidal
uncertainty set in the Nyquist plane (see Section 1.2). In this thesis, we
extend the stochastic embedding technique to closed-loop identification
and we give a general expression of the uncertainty region £ (valid for
both the open-loop and closed-loop cases) that exposes the structural
similarities of the uncertainty set £ with the uncertainty region D. The
last contribution of this thesis is to develop the same robust stability and
performance analysis tools for £ as was developed for D i.e. a necessary
and sufficient condition for the stabilization of all plants in £ by a given
controller and an LMI-procedure to compute exactly the worst case per-
formance achieved by a given controller over all plants in £. Both tools
have been derived from the structural similarities between D and L.

It is to be noted that a technical problem prevents us from computing
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the worst case v-gap for the uncertainty region L.

1.4 The actors

Before giving the general outline of the thesis, let us present the different
“actors” that will intervene in this thesis.

The true system Gy. The true system is the process we want to
control. It is assumed to be Single Input Single Output (SISO), Linear
Time Invariant (LTT) and finite dimensional.

The uncertainty region. The uncertainty region is deduced from a
PE identification procedure on the true system. This is called D if the
model structure is assumed unbiased and L if the model structure is
linearly parametrized and possibly biased. The uncertainty region is a
set of systems that contains the true system at a certain probability
level.

The model G,,,q- The model G,,,q is the model chosen for control
design. This model is generally the identified model, center of the un-
certainty region D (or L£). However, this is not a requirement: G,.q
may be given.

The controller C'. The controller C is the controller designed from
Gmod that we want to apply to the unknown true system. In order
to apply C to Gy with confidence, we need to verify if the controller
C stabilizes and achieves sufficient performance with all plants in the
uncertainty region D (or £) containing the true system Gj.

1.5 General outline

This thesis is organized as follows:

Chapter 2: Uncertainty region deduced from PE identification
with unbiased model structures. This chapter recalls the general
results of PE identification with unbiased model structures and presents
the procedure that allows one to design uncertainty sets D using a PE
identification procedure with an unbiased model structure.
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Chapter 3: A measure of robust stability for the uncertainty
region D. This chapter introduces the worst case v-gap, gives an LMI
procedure to compute it and shows why this measure can be considered
as a robust stability measure of D.

Chapter 4: A necessary and sufficient robust stability condition
for D. This chapter presents the necessary and sufficient condition for
the stabilization of all plants in D by a given controller.

Chapter 5: Worst case performance in D. This chapter defines
the notion of worst case performance achieved by a given controller
over all the plants in the uncertainty region D and gives the LMI-based
optimization problem that computes it exactly.

Chapter 6: Practical simulation examples. In this chapter, our
methodology is applied to two realistic simulation examples: a flexible
transmission system and a ferrosilicon production process.

Chapter 7: Frequency domain image of a set of linearly parametrized
transfer functions. In this chapter, we analyze the image of the un-
certainty region D in the Nyquist plane in the case where the model
structure is chosen linearly parametrized.

Chapter 8: Extension to biased model structures using stochas-
tic embedding. This chapter presents the stochastic embedding as-
sumptions and gives the procedure to design the uncertainty region £
in open-loop and in closed-loop.

Chapter 9: Robustness analysis of £. In this chapter, we give
the robust stability and robust performance analysis tools for the uncer-
tainty region L.

Chapter 10: Conclusions. This chapter concludes this thesis and
proposes some possible further research topics.
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Chapter 2

Uncertainty region deduced
from Prediction Error
Identification with unbiased
model structure

As said in the previous chapter, this work presents a framework that
connects Prediction Error (PE) identification and Robust Control The-
ory. For this purpose, in this chapter, it is shown that PE identification
with unbiased model structure allows one to design an uncertainty re-
gion containing the true system at a certain probability level, without
any further assumptions.

Prediction error identification delivers an estimated model for the
true plant Gy. If the parametric structure for the model is sufficiently
complex to represent the true system, then this model is asymptotically
unbiased, and the covariance matrix of the parameter estimates allows
one to construct a parametric uncertainty region U containing the pa-
rameters of the true system Gy at a certain probability level that we
can fix at, say, 95 %. The uncertainty region U in the parameter space
defines an equivalent uncertainty region D in the space of transfer func-
tions with the identified model as its center. This uncertainty region D
is thus defined as a set of parametrized transfer functions, whose param-
eter vector is constrained to lie in an ellipsoidal region in the parameter
space.

11
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Chapter outline. In Section 2.1, we first recall the notion of unbiased
model structure and the results of PE identification with such model
structure. In Section 2.2, we go through the different types of identifi-
cation (open-loop, closed-loop, Model Error Model approach, ...) and
show the procedure to design an uncertainty region with each of these
types. In Section 2.3, the general structure of the uncertainty regions
delivered by PE identification is presented.

2.1 PE identification with unbiased model struc-
ture

In this section, we present the results related to PE identification with
unbiased model structure. More details can be e.g. found in [63]. Before
proceeding to this, we first recall the classical results of PE identification
whatever model structure we choose to perform this identification.

2.1.1 General results of PE identification

PE identification consists of selecting a parametrized model of an un-
known system Py in a certain model structure using time-domain data
collected on this system Fy. The rule by which this selection is performed
using the data, is a prediction error criterion i.e. the minimization of
the errors between the outputs that are predicted using the parametrized
model and the actual outputs collected on the system.

The system Py we want to identify can e.g. be a real-life plant or
a closed-loop transfer function describing a loop containg the real-life
plant. In the sequel, we will always consider systems P, having the
following properties.

Assumption 2.1 The system Py that we want to identify is stable,
single input single output (SISO), finite dimensional and linear time-
invariant (LTI), with a discrete-time rational input-output transfer func-
tion Py(z):

y(t) = Po(z)u(t) +o(t), (2.1)
where u(t) is the input signal, y(t) the output signal and v(t) is an ad-

ditive noise that is assumed to be generated by a white noise e(t) filtered
by a discrete-time rational transfer function Hy(z):
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The noise v(t) corrupting the output y(t) is thus assumed to be the real-
ization of a zero mean stochastic process.

In order to find a model for the system P,, we need
1. input and output signals collected on the system Py

2. a model structure M for P, from which we will select a model for
Py using the prediction error criterion and the collected data.

3. a model structure for Hy from which we will select a model for H
using the same prediction error criterion and the same data.

In order to collect data on Py, we apply the following procedure:

Definition 2.1 (data collected on Py) Let us consider the system Py
satisfying Assumption 2.1. We apply a known sequence Uy = {u(t)|t =
1..N} of N input data to Py. This input sequence is assumed persistently
exciting (see [63]). We collect the corresponding noisy output sequence
Yy ={y(t)|t = 1...N} generated by (2.1).

A model structure is a set of parametrized transfer functions. Let us
define the model structure for Py as follows:

M={P(@H) |6 c RF*1}, (2.2)

The vector 0 is called the parameter vector. As we will never use the
model of Hy, we will not define the model structure for Hy formally.
However, we must always keep in mind that a PE identification proce-
dure pertains to the identification of both a model for Py and a model
of Hy. Let us now summarize the general results of PE identification in
the following proposition.

Proposition 2.1 ([63]) Let us consider the system Py satisfying As-
sumption 2.1 and the sequences Uy and Yy collected on Py as shown
in Definition 2.1. Let us also consider a model structure M for Py as
defined in (2.2). A PE identification procedure with Uy, Yy and M de-
livers an identified parameter vector 0 defining a model P(0 ) € M. The
identified parameter vector 6 is the parameter vector that minimizes the
sum of the square of the predicted errors i.e. the differences between the
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predicted outputs §(t,0) ' and the actual outputs y(t):

62 arg mlnz —y(t))? (2.3)
t=1

Moreover, 0 is asymptotically a random vector with gaussian distribu-
tion, mean 0* and covariance C':

6 ~ AsN(6*,C) (2.4)

where 0* € R**! is an unknown parameter vector and C € RF*F is
an unknown symmetric positive definite matriz. Besides an identified
parameter vector é, the PE identification procedure also delivers an es-
timate Py of the covariance matriz C of 6.

2.1.2 PE identification with unbiased model structure

PE identification with unbiased model structure is the particular case of
PE identification where the model structure for P, is chosen unbiased.
A model structure M is said unbiased if the system P, lies in M:

Definition 2.2 (Unbiased model structure for Py) Let us consider
a system Py satisfying Assumption 2.1 and a model structure for Py as
defined in (2.2). The model structure M is said unbiased for Py if there
exists a parameter vector 0y € R¥*! such that

—P(eg) eM

Definition 2.2 and Proposition 2.1 show that a PE identification proce-
dure with an unbiased model structure delivers a full order model of the
true system.

When an unbiased model structure is used, the only error you can
obtain on the estimation of Py is the covariance error due to the (zero
mean) noise v(t) corrupting the output of Py. The mean of the estimated
parameter vector 6 is consequently the true parameter vector 6y. This
is summarized in the following proposition.

If we define the model structure for Ho as Mz = {H(0) | # € R**'}, then the
predicted outputs (¢, 6) is equal to H*(8)P(0)u(t) + (1 — H™1(8))y(t).
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Proposition 2.2 ([63]) Let us consider that the PE identification pro-
cedure described in Proposition 2.1 is performed with an unbiased model
structure M for Py = P(0y) as defined in Definition 2.2 2. Then, the
identified parameter vector 0 defines an unbiased model P(é) € M and
has the property of being asymptotically a random vector with gaussian

distribution, mean 0y and covariance C':
0 ~ AsN (6, C) (2.5)

where C € R¥** s an unknown symmetric positive definite matriz.
As for general model structures, the PE identification procedure with
unbiased model structure also delivers an estimate Py of the covariance
matriz C of 0.

Although the Gaussian distribution property of the identified param-
eter vector is an asymptotic property (i.e. a property obtained when
N — 00), we will use this property in the sequel for a finite but suf-
ficiently large number N of data. This widespread approximation in
Statistics Theory has been proved accurate in [63]. Using this approx-
imation, the results presented in Proposition 2.2 allows one to define
confidence ellipsoids centered at the identified parameter vector 6 and
containing the unknown parameter vector with a certain probability
level.

Proposition 2.3 ([63]) Let us consider the system Py = P(60y) satisfy-
ing Assumption 2.1. Let us also consider the identified parameter vector
6 and the estimate Py of the covariance matrizc ofé as delivered by a
PE identification procedure performed on Py using a sufficiently large
number N of input-output data and an unbiased model structure M (see
Proposition 2.2). We have then that the ellipsoid U of size x i.e.

U={0]0-0"P,1(0-0)<x} (2.6)
contains the true parameter vector 6y with a probability a(k,x):
a(k,x) = Pr(6y € U) = Pr(x*(k) < x),

where x%(k) is the chi-square probability density function with k degrees
of freedom.

2The model structure for Ho is also assumed unbiased. However, it is not a
requirement in the case where the model structures for Py and Hy are independently
parametrized and the signals u(t) and v(t) are not correlated.



16 Uncertainty region deduced from PE identification...

Proof. This proposition is a direct consequence of the fact that N has
been chosen sufficiently large and of Proposition 2.2. O

Remarks.

e The use of the chi-square probability distribution with k& degrees
of freedom to define the probability density linked to U is in
fact an approximation. Indeed, since Py is only an estimate of
the covariance matrix C obtained with N experimental data, the
probability density function linked to U is a function of the F-
distribution F'(k, N — k) : the probability of the presence of 6y in
Uis Pr(F(k,N — k) < x/k). Nevertheless, since N will generally
be large, we have that Pr(F(k,N — k) < x/k) = Pr(x%(k) < x).

e The probability level a(k, x) can be chosen by the designer.

e If you choose a probability level a(k, x) = 0.95, it actually means
that we have a probability of 95 % that the realisation of the noise
v(t) in the considered experiment has generated a covariance error
on the estimate @ such that the true parameter vector 6y lies in
the confidence ellipsoid U.

2.1.3 PE identification with unbiased ARX model struc-
tures

In the previous subsection, we have briefly presented the general results
of PE identification with unbiased model structures. These results are
summarized in Proposition 2.2. In order to illustrate these results, we
will present, in this subsection, the mathematical details of a PE iden-
tification procedure with unbiased model structure when the system P,
has an ARX structure. A system Py is said to have an ARX structure
if the relation between its input u(¢) and its output y(¢) is given by

A(010)y(t) = B(02,0)ul(t) + e(t). (2.7)

The vectors 01y € R"*! and a0 € R™*! are unknown parameter
vectors. The signal e(t) is a white noise of variance 0. B(fa0) is a
polynomial in z~! with a certain delay that is here assumed equal to 1:

B(9270) = ( 2_1 2_2 e 2T )9270,

and A(6; ) is a monic polynomial in 2~ ! given by
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A(el,g) =1+ ( 27l 272 . oz )9170.

In order to perform a PE identification procedure with unbiased
model structure for the system P, as defined in (2.7), let us measure
N input data u(t) and the corresponding N output data y(t) generated
by (2.7) and let us define an unbiased model structure as well for the
system Py = B(f2,)/A(01,0) as for the noise model Hy = 1/A(6:):

Muarx = {P(O) = iEZi; and H(0) = A(101) | g = ( Z; ) c R(na+nb)><1}
(2.8)

The identification of a model from M 4rx is equivalent to the iden-
tification of a parameter vector  using the criterion presented in (2.3).
In order to proceed to the determination of 9, let us first introduce
the following notations about the actual outputs y(¢) and the predicted
outputs ¢(t,0) that are both used in (2.3):

0o
)= o0) (g2 ) +ett 29)
v B3 A
oy [ e\ e(1) \
v@ | _ | 4@ g, | @ | 2.10)
y(N) H(N) (N)
where ¢(t) = (—y(t—1) ... —y(t—mns) u(t—1) .. ult—mnp) ).

The predicted output ¢(t, 6) for a system in M sy is given by §(t,0) =
#(t)0 [63]. As for the actuals outputs, let us construct a vector with the
N predicted outputs:

= 0 (2.11)
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We are now able to find the estimate  that minimizes the predic-
tion error criterion presented in (2.3). Indeed, using expressions (2.10)
and (2.11), we can rewrite that criterion as follows:

0 =arg min (@6 - Y)T(®0 —Y)].
It yields:

6= ("0)"'0"Y = QY (2.12)

Let us now analyze the mean and the covariance of the estimate 0.
The mathematical expectation £6 of 8 can be computed as follows:

Y
0 = £[(@Td) T (96) + E)]
0 + (2T®) 1oTe(E)
= 6 (2.13)

We obtain the result of Proposition 2.2 that tells us that the mean of
the estimate 6 is equal to 6y in the case of unbiased model structures.
Let us now compute the covariance matrix C of 6:

C=E[(0—00)0—00)"] = E(QE)QE)T]
a2QQT (2.14)

The matrix C is unknown since the variance o2 of the white noise e(t)
is unknown. However, we can obtain an estimate 62 of o by using a
maximum likelihood technique [63]. As a consequence, we also obtain
an estimate Py of C:

Py =5%QQ" (2.15)

Remark. In this subsection, we have analyzed the case of ARX model
structures. It is to be noted that, if the chosen model structure is not
linear in @ (such as in the ARX model structure), the determination of
0 and of Py require numerical optimization routines (see e.g. [63]).
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2.2 Design of uncertainty regions using PE iden-
tification

In the previous section, we have recalled the important results related
to PE identification with unbiased model structure. In this section, we
will show that we can design an uncertainty region containing the real-
life plant G, the so-called true system Gy using a PE identification
procedure with unbiased model structure, and this without adding any
further assumptions on the true system Gy than the classical assump-
tions required by PE identification. We will consider different types of
PE identification, namely:

¢ open-loop identification [63],

model error model identification [62, 64, 43, 42],

direct closed-loop identification [78],

indirect closed-loop identification [78],

Dual-Youla closed-loop identification [52, 51, 75, 27].

Open-loop identification is the classical way to perform identification.
However, in many industrial applications, due to unstable behaviour of
the plant, experimental data can only be obtained in closed loop and
a closed-loop identification must be performed. Moreover, the recent
results on identification for control have promoted the use of closed-loop
identification for producing models that are better suited for control
design (see e.g. [38, 39]). The properties of the different types of closed-
loop identification are compared in e.g. [28]. The model error model
approach has been introduced by L. Ljung in order to validate an a-
priori given model G,,,¢ and consists in the identification of a model for
the difference between the true system and the model G,,,,4. Open-loop
and closed-loop identification can be considered for this approach.

We will show that all these types of identification lead to uncertainty
regions that have the same general structure. Before proceeding to this,
we will first present the assumptions we made about the true system
Gy. These assumptions are the classical assumptions required by PE
identification with unbiased model structure.
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2.2.1 Assumptions on the true system G,

In the sequel, we will assume that the true system Gy is SISO and
LTT. Moreover, we assume that Gy can be described by a discrete-time
rational transfer function Gy(z) having the following general form

Zﬁd(bg + blzfl + ...+ bmzfm) . 22(2)90

l+aiz7 + ..+ apz™ 1+ Z1(2)8]
(2.16)

GO(Z) = G(Zag[)) =

where

e d is the delay;
e 01 =[a1 ... ap by ... by] € RI!, ¢ a (n+m+1);
e Z1(z)=[z71 272 ... 27" 0 ... 0] is a row vector of size ¢;
e Zy(2) =274[0..01 27" 272 ... 27™] is a row vector of size q.
We will further assume that the input-output relation for Gy is given by
y(t) = Gou(t) + v(t), (2.17)

where v(t) is additive noise modelled by v(t) = Hy(z)e(t). The transfer
function Hy(z) is a discrete-time rational transfer function and e(t) is a

white noise of variance o2.

These assumptions are equivalent to the assumptions we made about
the system Py in the previous section. The only difference is that we do
not require here that the true system G is stable. Indeed, this stability
is not needed for the closed-loop identification procedures. However, the
stability of G is required in order to perform an open-loop identification
or an identification using the model error model approach in open-loop.

2.2.2 Open-loop PE identification

Let us consider the true system G| presented in Section 2.2.1. Here, we
further assume that Gy is stable. The true system G| satisfies there-
fore Assumptions 2.1, and we may therefore perform a PE identification
with unbiased model structure with this true system. Using (2.16), an
unbiased model structure for Gy is given by

My = {G(e) 1G(o) = %} (2.18)
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where §# € R?*!, If we know collect N input data u(t) and output
data y(t) on the true system Gy, we have all the elements to perform
the identification. As stated in Proposition 2.2, this identification yields
a model G (é) € M, and an estimate of the covariance matrix Py of
6. Using now Proposition 2.3, the true parameter vector 6y lies with

probability «(g, x) in the ellipsoidal uncertainty region
Uua=1{0](0-6TP"(0-0) <x} (2.19)

This parametric uncertainty region U, defines a corresponding uncer-
tainty region in the space of transfer functions which we denote D,;:

Dol = {G(g) | G(g) = % and 0 € Uol} (220)

Properties of D,,.
Gy € D, with probability a(q, x)

We have thus defined an uncertainty region D,; centered at the iden-

tified model G(A) and containing the true sytem G, with probability
a(q, x) (e.g. a=0.95).

2.2.3 Model Error Model Approach

In this section, we will show that we can also obtain an uncertainty re-
gion containing the true system at a certain probability level using the
Model Error Model (MEM) approach. This approach was introduced
by Lennart Ljung in [62] for the open-loop case and was extended to the
closed-loop case in [43]. We will here only consider the open-loop case
in order to remain concise. However, we can also deduce an uncertainty
region from MEM in closed-loop as proved in [43, 42]. In the MEM
approach, we consider a stable true system G satisfying the assump-
tions presented in Section 2.2.1 and an a-priori given model G,,,q for
this true system?. This approach consists of identifying a model for the
error between the given model G,,,,q and the true system Gjy. A model
for G is then deduced by adding G,,,q to the identified “error model”.

Just as for the open-loop identication case presented in the previous
subsection, we collect on the true system Gy two sequences Uy and Yy

3This model Goa is typically the model we want to use for control design.
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containing N inputs u(t) and the corresponding outputs y(t), respec-
tively. Using these data, we compute the N residuals £(t):

£(t) = y(t) — Gmoqul(t): (2.21)

We have then the following relation between the inputs u(¢) and the
residuals £(t):
0Go
—_—
e(t) = (Go — Gmod) u(t) + Hoe(t) (2.22)

As the system 0G| satisfies Assumptions 2.1, we can perform a PE
identification with unbiased model structure for 6Gy. An unbiased model
structure for 4Gy is a function of the given model G,,,4. Let us therefore
denote it in the following generic form:

Moo = {G0) | 610) = 251 (229

where we have that 7 is a real vector of size, say, | and that Z3(z)
and Z4(z) are row vectors of size | constructed in the same way as Z;
and Zp in (2.16) and therefore containing only delays and zeros. As
Mpem 18 an unbiased model structure for §Gy, there exists a vector
1o such that Gy = C~7’(770) € Mmem. As stated in Proposition 2.2,
a PE identification procedure with Uy, &y = {e(t)|t = 1...N} and
Mmem yields an unbiased model G (n) of 6Gy and an estimate P, of the
covariance matrix of 7. Using now Proposition 2.3, the true parameter
vector 7 lies with probability «(l, x) in the ellipsoidal uncertainty region

Umem ={n | (n—9)" P (n—9) < x} (2.24)

From this set Upem, we can deduce the set of corresponding plants G (n)
defined as:

Dem = {G(0) | G(1) = Gomoa + G(n) and 0 € Upem} ~ (2.25)

The notation G(7) used in (2.25) denotes the rational transfer function
model whose coefficients are uniquely determined from 1 by the mapping
G(n) = Gpmog+G(n). The nominal model for the true system G derived
from G(A) is G(7). It is important to note that, using the expression
of G(n) in (2.23), the uncertainty region Dy, can also be rewritten as
follows:
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Gmod + ZS

Do = {60) | 610 = 270 g € U | (220)

with Z5 = Z3 + Z4G 04 and Zg = Z4
Properties of U,,¢;, and Dyep, -

N0 € Unem with probability a(l, x)

Go = G(no) € Dmem with probability a(l, x)

Just as was done for open-loop identification, we have thus defined an
uncertainty region Dyy,ep, that is centered at the model G (7)) derived from
the identified G(77) and that contains the true system Gy at a certain
probability level.

2.2.4 Closed-loop identification

Let us consider again the true system G presented in Section 2.2.1. In
order to perform the identification in closed-loop, we connect the true
system with a stabilizing controller K as shown in Figure 2.1.

r2(t) v(t)

+

K - Go
HC Uiti + y(t)

rit) +

Figure 2.1: Closed-loop connection of Gy and the controller K

Using Figure 2.1, we can write the following relations between the
signals present in the closed loop [K Gy]:

T(Go,K)

y() \ _ [ tier bk | [ m®) e ),
<u<t>> (LK e (m<t>)+(1+-Gng) () (2.27)
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y(t) = Goul(t) + v(t) (2.28)

Different types of PE identification can be performed using data
collected on the closed loop [K Gpy]. We will here distinguish direct,
indirect and Dual-Youla closed-loop identifications and show that un-
certainty regions can be deduced from these three types of closed-loop
identification.

2.2.4.1 Direct closed-loop identification

The objective of direct closed-loop identification is to identify a model of
the true system using input signals u(¢) and output signals y(¢) collected
on the closed loop [K Gp]. We will therefore apply a sequence of N
signals r1(t) (or 72(t)) to the closed-loop and collect the corresponding
sequences of data Uy and Yy:

Uy = {u®)|t =1..N} Yy = {y(t)|t = 1..N}

The procedure of identification then follows the same procedure as for
open-loop identification*. The uncertainty region deduced from direct
closed-loop identification has therefore the same form as the uncertainty
region D, given in (2.20).

2.2.4.2 Indirect closed-loop identification

The objective of indirect closed-loop identification is to identify a model
of one of the four closed-loop transfer functions describing the loop
[K Gp]. These four “true” closed-loop transfer functions are the en-
tries of the matrix T'(Gy, K) defined in (2.27) i.e.

1 _ _GoK 2 __ Go 3 K 4
TO — 14+GoK TO T 14GoK TO T 14GoK TO -

Tor  (229)

The model for Gy is then computed from the estimate of any one of
these four transfer functions by inversion of the mapping (2.29), using
knowledge of the controller K. The selection of one of those trans-
fer functions for identification is linked to the available signals and the
structure of the controller K. Indeed, it is proved in [21] that the pres-
ence of unstable (or unit-circle) poles or zeros in K imposes restrictions

Tt is nevertheless to be noted that an unbiased model structure for the noise
model is here required.
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on the subset of these transfer functions that can be identified.

In the sequel, we show how we can construct an uncertainty region
Djq containing the true system in the case where the first closed-loop
transfer function TO1 is estimated. An uncertainty region D;, can be
derived similarly for the other cases (see e.g. [13] for the identification
of T3).

Let us therefore apply a sequence of N data r1(t) to the closed-loop
[K Gy] and collect the corresponding sequence of data y(t). We have
the following relations between 71 (¢) and y(¢):

Ty
GoK 1
0
t) = ———=nri(t) + ————=v(t 2.30
W) = e 0 + g0 (2:30)
Since the transfer function TO1 satisfies Assumptions 2.1, the N data
r1(t) and y(t) can be used to identify a full-order model for Tj. For this
purpose, we need to define an unbiased model structure for TOI. Since
the structure of Ty is a function of the controller K, let us define it in
the following generic way

Mia= {10 |76 = 752 231)

where we have that & is a real vector of size, say, f and that Z3(z)
and Z4(z) are row vectors of size f constructed in the same way as
Zy and Zy in (2.16) and therefore containing only delays and zeros.
As M, is an unbiased model structure for T, there exists a vector
& such that T} = T(&)) € M,q. As stated in Proposition 2.2, a PE
identification procedure with the N data r1(¢), the N corresponding data
y(t) and M yields an unbiased model T'(€) of T} and an estimate P
of the covariance matrix of f . Using now Proposition 2.3, we can define
an ellipsoidal parametric uncertainty region U;. that contains the true
parameter vector &y at the probability level a(f,x):

Ui = {6 | (€= OTP7I(E - &) <x} (2.32)

From this set U, we can deduce the set of corresponding open-loop
plants G(§) defined as:
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Dje = {G(é) | G(§) = %

The notation G(£) used in (2.33) denotes the rational transfer function
model whose coefficients are uniquely determined from ¢ by the mapping

T()
K(1-T(¢))

and & € Uicl} (2.33)

a8 = (2.34)

The nominal open-loop model derived from T (é )isG (f ). It is important
to note that, using the expression of T'(¢) in (2.31), the uncertainty
region D;, can also be rewritten as follows:

Z
D= {6(0) 1 6(6) = L

with Zg = Z7/K and Zl() = Zg - Z7

and & € Uicl} (2.35)

Properties of U, and D;;.

&o € Ui with probability a(f, x)

Go = G(&) € Djy with probability a(f,x)

We have thus defined an uncertainty region D;. that is centered at the

open-loop model G(¢) derived from the identifed 7'(¢) and that contains
the true system Gy at a certain probability level.

2.2.4.3 Dual-Youla closed-loop identification

The so-called Youla parametrization gives the parametrization of all
controllers stabilizing a plant (see [29]). For identification purpose, this
result has been extended to the parametrization of all plants stabilized
by a controller [52, 51]. This result is recalled in Proposition 2.4, but be-
forehand, we give the following definition that is used in Proposition 2.4.

Definition 2.3 ([83]) Let us consider a transfer function G. The pair
{N, D} is a coprime factorization of G if
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e N and D are stable tranfer functions;
o G = %;

e there exists stable transfer functions X and Y such that XN +
YD=1

Proposition 2.4 ([83]) Let us consider a plant G having a coprime
factorization {Ng, D¢} and a controller C having a coprime factoriza-
tion {N¢,Dc}. Let us also assume that C stabilizes G. Then, the set
S of all (LTI and finite dimensional) plants stabilized by C' is given by:

Ng + DcR

S:{Gm | Gin: Do — NoR

with R € RHy}

The parametrization presented in Proposition 2.4 can be applied
to the loop [K Gy] presented in Figure 2.1. Indeed, consider a given
initial system G, that is stabilized by K. Using Proposition 2.4, the
true system Gy (also stabilized by K) can be represented in the Youla
parametrization for a stable transfer function Ry:

_ Nu+ DgRy

Gy =21 —“78"Y
" D, — NkRy’

(2.36)
where {N,, D} and {Ng, Dk} are coprime factors of G, and K, respec-
tively . The objective in Dual-Youla closed-loop identification [52, 51]
is to identify the Youla parameter Ry of the true system using data col-
lected on the closed-loop [K Gg]. A model for the true system is then
deduced from the identified Youla parameter.

In order to perform this identification, a sequence of N data r(t) is
applied to [K G| and the corresponding data u(t) and y(¢) are collected.
Using the signals u(t) and y(t), we can compute the following auxiliary
signals z(t) and z(t):

z(t) = (Dy + KN,) Hu(t) + Ky(t)) (2.37)
2(t) = (Dxc + GaNi) ™ (y(t) — Gou(t)). (2.38)

These auxiliary signals z(¢) and z(t) are such that
Z(t) = R[){L'(t) + H[)(DK(l + KG[)))_IU(t). (2.39)

®It is to be noted that the transfer function Ro depends on the choice of the pairs
{Nx, Dm} and {NK, DK}.
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Since Ry satisfies Assumptions 2.1, the sequences of N data z(t) and of
N data z(t) can therefore be used to identify a full order model of R).
For this purpose, we need to define an unbiased model structure for Ry.
Since the structure of Ry is a function of the controller K and of G, let
us define it in the following generic way:

Mgy = {R(o | R(¢) = %} (2.40)

where we have that ( is a real vector of size, say, p and that Z;(z) and
Z19(z) are row vectors of size p constructed in the same way as Z; and
Z in (2.16) and therefore containing only delays and zeros. As Mg, is
an unbiased model structure for Ry, there exists a vector (y such that
Ry = R((p) € Mgyy. As stated in Proposition 2.2, a PE identification
procedure with the N data z(t), the N data z(t) and My, yields an
unbiased model R(f ) of Ry and an estimate P of the covariance matrix
of f . Using now Proposition 2.3, we can define an ellipsoidal parametric
uncertainty region Uy, that contains the true parameter vector (o at the
probability level a(p, x):

U = ¢ 1 (= OTPC=8) < x} (2.41)

From this set Ug,, we can deduce the set of corresponding open loop
plants G(¢) defined as:

Dy = {G(C) | G(¢) = D, — NcR(C)

and ¢ € Udy} (2.42)

~ ~

The nominal open-loop model derived from R(¢) is G({). It is important
to note that, using the expression of R(() in (2.40), the uncertainty
region Dy, can also be rewritten as follows:

G, + 7
Dy, = {G10) | Go) = G2

with Zi13 = G, Z12 + (D Z11/Dy) and Zyg = Z12 — (N Z11/Dy)

and ¢ € Udy} (2.43)

Properties of Uy, and Dy,,.

Co € Ugy with probability a(p, x)
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Go = G(Co) € Dyy with probability a(p, x)

We have thus defined an uncertainty region Dg, that is centered at the

model G(¢) derived from the identifed Youla parameter R(() and that
contains the true system G at a certain probability level.

2.3 General structure of the uncertainty regions
deduced from PE identification

In the previous section, uncertainty regions containing the true system
have been obtained as a result of open-loop identification, the model
error model identification and direct, indirect and Dual-Youla closed-
loop identification. These uncertainty regions take the form of a set of
parametrized open-loop transfer functions where the parameter vector
lies in an ellipsoid U. This fact can be summarized in the following
proposition.

Proposition 2.5 Consider Gy = G(z,0p), the true system presented
in Section 2.2.1. The uncertainty regions D resulting from prediction
error identification, and which contain the true system Gy at a prescribed
probability level, can all be described in the following generic form:

e+ Zno

D= {G(z,d) | G(z,0) = T+ Zpo

and § €U = {0 | (5—$)TR(5—8)<1}}

(2.44)
where

o § € R¥*! is a real parameter vector;

5 is the parameter estimate resulting from the identification step;

e R is a symmetric positive definite matriz € R¥** that is propor-
tional to the inverse of the covariance matriz of §;

Zn(z) and Zp(z) are row vectors of size k of known transfer func-
tions;

e ¢(z) is a known transfer function.
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Proof. This proposition is a direct consequence of expressions (2.20),
(2.26), (2.35), (2.43). O

Proposition 2.5 defines the uncertainty region D. Let us point out the
following characteristics of this uncertainty region.

e The uncertainty region D is simply and directly the result of a PE
identification procedure with unbiased model structure performed
on the true system. A PE identification procedure with unbiased
model structure leading to an uncertainty region will be called a
validation experiment in the sequel.

e The true system G lies in D at a certain probability level that is
fixed by the designer.

e The uncertainty region D is centered at G(z, ) which is a model of
the true system Gy. This model is either the identified model (in
open-loop identification) or the model of the true system G that
is derived from the identified transfer function (in the other cases
of identification). This model G(z,d) is generally chosen as model
for control design. However, it is of course not a requirement.

e Different identification experiments (i.e. open-loop or closed-loop
identification, different measured data, ...) lead to different identi-
fied parameter vectors, different covariance matrices, and therefore
also different sets of systems D(9).

It has been noted in Chapter 1 that other techniques (i.e. set mem-
bership identification and the model invalidation concept) have been de-
veloped to estimate an uncertainty region containing the true system
under a variety of assumptions that are often a great distance from the
classical assumptions used in PE identification. These techniques generi-
cally aim at producing classical frequency domain linear fractional uncer-
tainty regions used in mainstream robust control theory such as additive
uncertainty regions (see e.g. [70, 56, 66, 49]) or coprime factor uncer-
tainty regions (see e.g. [16]). The reason for producing such classical
uncertainty regions is that a large number of robustness tools have been
developed for these particular types of uncertainty regions [92, 91, 86].
Our uncertainty region D is quite different from these standard uncer-
tainty regions. In order to establish these differences, let us compare the
uncertainty region D with e.g. the additive uncertainty region defined
below.
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Definition 2.4 (additive uncertainty region) Let us consider a sta-
ble model G0q and a stable transfer function A(z). An additive uncer-
tainty region of size B is then defined as follows:

Go = {Gin(2) | Gin(2) = Gmod(2) +A(2) with || A(2) [lo< B} (2.45)

By comparing (2.44) and (2.45), several differences can be noted. How-
ever, the major difference is that the uncertainty part ¢ in D is a real
parameter vector and not a transfer function as in the additive uncer-
tainty region. Our uncertainty region D is indeed a parametric uncer-
tainty region and not a frequency domain uncertainty region.

Due to the huge developments achieved in robust control theory in
the last years, a lot of new robustness results are now also available for
uncertainty sets with a parametric (i.e. real) uncertainty part (see e.g.
[34, 35, 53, 72, 7, 4, 5]). Some of these results will help us to develop
robustness tools adapted to the uncertainty region D even though ma-
nipulations of D and new results will also be required to obtain these
robustness tools.

We have developed a robust stability analyzis tool (see Chapter 4)
as well as a robust performance analysis tool (see Chapter 5) for D.
The robust analysis tool is a necessary and sufficient condition for the
stabilization of all plants in D by a given controller. This condition
is therefore a condition for the stabilization of the true system Gy by
this controller. The robust performance analysis tool is an LMI (Linear
Matrix Inequality) procedure computing exactly the worst case perfor-
mance achieved by a given controller over all plants in D. This worst
case performance is therefore a lower bound of the performance achieved
by the considered controller with the true system Gj.

We have also developed another type of result for the uncertainty
region D that no more pertains to the validation of one particular con-
troller, but pertains to determining what quality an uncertainty region
D must possess for it to be tuned for robustly stable controller design.
Indeed, in Chapter 3, we introduce a measure of size of the uncertainty
set D, the worst case v-gap, that is directly connected to the size of the
set of model-based controllers that are guaranteed by the v-gap theory
[84]% to stabilize all plants in D. More particulary, the smaller is this

®This controller set is not guaranteed to contain all stabilizing controllers.
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measure, the larger is the set of robustly stabilizing controllers. This
robust stability measure can thus be used as a tool to assess the qual-
ity (with respect to robustly stable controller design) of an uncertainty
region D obtained by a validation experiment (i.e. a PE identification
experiment). This robust stability measure also draws guidelines for the
design of the validation experiment: a validation experiment should al-
ways aim at producing an uncertainty region D with a small worst case
v-gap since it implies that the obtained uncertainty region will have a
large set of robustly stabilizing controllers.

2.4 Conclusions

In this chapter, we have shown that a validation experiment (i.e. a
PE identification procedure with unbiased model structure) allows one
to design an uncertainty region containing the true system at a cer-
tain probability level, and this without adding any further assumptions.
This uncertainty region takes the form of a set of parametrized transfer
functions whose parameter vector is constrained to lie in an ellipsoid.



Chapter 3

A measure of robust
stability for the uncertainty
region D

In the previous chapter, we have presented the design of an uncertainty
region using a PE identification procedure performed on the true system
using an unbiased model structure. We call this procedure a validation
experiment. The uncertainty region D deduced from such validation ex-
periment takes the form of a set of transfer function parametrized by a
real vector which is constrained to lie in an ellipsoid. The uncertainty
region D has the property to contain the true system Gy at a probability
level that can be fixed by the designer. The general structure of D is
given in (2.44). This expression of D does not inform us about the size
of the set of controllers that robustly stabilize all plants in D. In other
words, by observing D, we can not say if this controller set is large or
small. As, in Chapter 4, we will deduce the stabilization of the true
system by a given controller by the verification of the stabilization of
all plants in D by the considered controller, this lack of information is a
real drawback. That is why, in this chapter, we introduce a measure of
robust stability for the uncertainty region D that is directly connected
to the size of a set of model-based controllers that are guaranteed to
robustly stabilize D (i.e. that stabilize all plants in D).

This robust stability measure for D is defined as the worst case (i.e.
the largest) v-gap [84, 85] between a model G,,0q and the plants in D.
Here G4 is the model that will be used for control design. This model

33
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Gmod 1s generally the center of the considered uncertainty region D.
However, it is not a requirement: this model can be also a reduced order
model obtained from this center or an a-priori given model.

Our first contribution is to show that the worst case v-gap can be
computed frequency-wise using an LMI-based optimization problem at
each frequency. Our second contribution is to show that the smaller the
worst case v-gap between the model G,,,,¢ and all plants in some D, the
larger is the set of G,,,q-based controllers ' that are guaranteed by the
v-gap theory to robustly stabilize D. The worst case v-gap is thus an
indicator of how well an uncertainty set D is tuned for robustly stable
controller design based on the model G,,,4 (chosen for control design).
A too large indicator will therefore incite the designer to reject the un-
certainty region and to perform a new validation experiment. We also
show that the worst case v-gap can be used as a tool for the selection
of the uncertainty region that is best tuned for robust control design, in
the case where different validation experiments have delivered different
uncertainty regions D). Finally, and it may be the most interesting
result, since the worst case v-gap characterizes what quality an uncer-
tainty region D (and therefore also the validation experiment that yields
this uncertainty set) must possess for it to be tuned for robust control
design, our result leads to guidelines for the design of the validation ex-
periment. This result may therefore be considered as the first step in
the direction of PFE identification for robust control.

The v-gap metric is thus chosen to characterize the amount of un-
certainty (i.e. the distance) between the model G,,,q and the plants in
an uncertainty region D. Our approach is thus based on the embedding
of the parametric uncertainty region D into a larger uncertainty set de-
fined by the v-gap metric. This introduces a conservatism, but allows
us to use the v-gap theory to characterize the size of the controller set
that is guaranteed (by this theory) to robustly stabilize D. It is obvious
that similar results could have been deduced from the embedding of D
into e.g. an additive or a multiplicative uncertainty region. However,
the choice of the v-gap metric is motivated by the fact that this metric
generally leads to the least conservative robust stability results [86].

'The G,,0qa-based controllers are the controllers designed from G,nod
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Chapter outline. We first present, in Section 3.1, the robust stabil-
ity results linked to the v-gap metric. In Section 3.2, we then define
the worst v-gap between a model and an uncertainty region D and a
procedure to compute it exactly is given in Section 3.3. In Section 3.4,
the worst case v-gap is then related to the size of the set of model-based
controllers that are guaranteed by the v-gap theory to robustly stabilize
an uncertainty region D. After having given different possible uses of
the worst case v-gap , we finish this chapter by presenting a simulation
example.

3.1 The v-gap metric and its robust stability
properties

As said in the introduction of this chapter, the robust stability mea-
sure for D is the worst-case v-gap between the model G,,,q and the
uncertainty set D. The worst-case v-gap is an extension of the v-gap,
introduced by Vinnicombe [84], which is a measure of distance between
two transfer functions. For the sake of completeness, we first briefly
recall the definition of the v-gap for scalar transfer functions.

3.1.1 The Vinnicombe r-gap between two plants

Definition 3.1 The gap metric between two transfer functions G1 and
G, introduced by Vinnicombe [84] and denoted §,, is defined as

max £ (G1(e), G2(e7?))  if W(G1,G2) =0

otherwise

0, (G1,Ga) = {
(3.1)

where
|G1(e/) = Go(e)]

K (Gi(e/?), Ga(e)) = V1+[G1(e9)[2\/1 + [Ga(el?) ]

(3.2)

and where W(G1,G2) = wno(l + G5G2) + n(G2) — 7(G1).

Here G*(e/¥) = G(e77%), n(G) (resp. 7(G)) denotes the number of
poles of G in the complement of the closed (resp. open) unit disc, while
wno(G) denotes the winding number about the origin of G(z) as z fol-
lows the unit circle indented into the exterior of the unit disc around
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any unit circle pole and zero of G(z).

If the winding number condition W (G1,Gs) = 0 is satisfied, then
the v-gap between two plants has a simple frequency domain interpreta-
tion (in the SISO case). Indeed, the quantity x(G1(e/¥), Go(e/%)) is the
chordal distance between the projections of G1(e/“) and Ga(e’*) onto
the Riemann sphere of unit diameter with South Pole at the origin of
the complex plane [84]. The distance 0, (G1,G2) between G; and Gy is
therefore, according to (3.1), the supremum of these chordal distances
over all frequencies. Observe that 0 < d,(G1,Gs) < 1.

3.1.2 The generalized stability margin of a closed loop
system

Consider now a closed loop system made up of the feedback interconnec-
tion of a system G and a controller C: see Figure 3.1. The closed loop

transfer function matrix between [r; r2]7 and [y u]” can be written as
ac e}
Tu T +GC  TFGC
T(G,C) = = : (3.3)
c 1
T T I+GC 1+GC

r2(t) l v(t)
ri(t) * l *
j-— C gl T Yo

Figure 3.1: Closed-loop connection of a system G and a controller C

Definition 3.2 The generalized stability margin of the closed loop
system is defined as

IT(G,C)|l.L if [C G] is stable
bac = (3.4)
0 otherwise
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It can be shown [84] that an alternative definition is

min & (G(eﬂ‘w), —#) if [C' G] is stable

w elv)

beo = (3.5)

0 otherwise

Thus, the generalized stability margin of a closed loop system [C' G] is
measured by the least chordal distance between the projections on the
Riemann sphere of G and of the inverse of —C. It is to be noted that,
for a given plant G, the generalized stability margin has a maximum
bopt(G) (see e.g. [91]) given by

bop(G) = maxboe = /1= | (N M ) [, (3.6)

where || A || is the Hankel norm of the operator A (see e.g. [92]) and
{N, M} is the normalized coprime factorization of G i.e. the coprime
factorization (see Definition 2.3) such that N*N + M*M =1

3.1.3 Robust stability and the v-gap

The main interest of the r-gap metric is its use in a range of robust
stability results. One of this result relates the size of the set of robustly
stabilizing controllers of a v-gap uncertainty set (i.e. an uncertainty set
defined with the v-gap ) to the size of this uncertainty set [84, 85].

Proposition 3.1 ([84, 85]) Let us consider an v-gap uncertainty set
G, of size B and centered at a model Gipoq:

gu = {G | 5V(Gm0d7G) < B}

Then, a controller C stabilizing G poq stabilizes all plants in the uncer-
tainty region G, if and only if it lies in the controller set:

{C(2) | ba,,.0c > B}

The size B of a v-gap uncertainty set G, is thus directly connected to
the size of the set of all controllers that robustly stabilize G,. Moreover,
the smaller is this size 3, the larger is the set of controllers that robustly
stabilize the uncertainty set G,. Let us now present a direct consequence
of Proposition 3.1 which relates the size of the set of controllers that are
guaranteed to stabilize two plants G; and G5 to 0,(G1, G2) [84].



38 A measure of robust stability for the uncertainty region D

Corollary 3.1 ([84]) Let us consider a nominal plant G| and a per-
turbed plant Go and denote 0,(G1,G2) the v-gap between these two
plants. Then, a controller C stabilizing G also stabilizes Go if this
controller lies in the controller set

{ C | bg,c>0,(G1,G2)}

3.2 The worst case v-gap between a model and D

The nice stability properties presented in the previous section show that
the G,,04-based controller set that is guaranteed (by Proposition 3.1) to
robustly stabilize D will be large, if the largest v-gap between G,,0q and
any plant in D remains small. We call this “largest v-gap” the worst
case v-gap owo(Gmod, D) between G0 and the set D.

Definition 3.3 Consider an uncertainty region D having the structure
given in (2.44) and a model G p,oq. The worst case Vinnicombe distance
Swc(Gmod, D) is given by? :

6WC(GmodaD) = Imax (5,,(Gmod, Gm) (37)

Gin€D

Another important quantity is now defined: the worst case chordal
distance. This quantity, whose computation is the result of a convex op-
timization problem involving LMI constraints as will be shown in Section
3.3, will allow us to give an alternative expression for oy c(Gpod, D).

Definition 3.4 At a particular frequency w, we define kyc(Gmod(€’®), D)
as the mazimum chordal distance between Gp,oq(€’?) and the frequency
responses of all plants in D at this frequency:

HWC(Gmod(ejw)a D) = GmaxD K/(Gmod(e]‘w)a Gin(ejw)) (38)
in€

This last quantity can now be used to give an alternative expression
of the worst case Vinnicombe distance. This is done in the following
lemma, which is an extension of a property presented in [85, page 66)].

2Note that, with some abuse, even though it could happen that the term “supre-
mum” should be used instead of “maximum”, we will always use the term “maximum?”
in the sequel.
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Lemma 3.1 If W(Guod, Gin) = 0 for one plant Gy, € D, then the
worst case Vinnicombe distance oy o (Gmod, D) defined in (3.7) can also
be expressed in the following way using the worst case chordal distance:

0w c(Gmod, D) = max kwc(Gmod(e’™), D) (3.9)
where kwc(Gmod(€7?), D) is defined in (3.8).

Proof. The winding number condition may be omitted in (3.9). In-
deed, assume there exists one G; € D for which W (G4, G1) # 0,
ie. 0,(Gmod, G1) = 1. Since the ellipsoid U in the expression (2.44)
of D is a connected set, then there always exists a piecewize contin-
uous application ¢ of [0 1] to plants in D such that ¢(0) = G, and
o(1) = G1. As W(Grod, Gin) = 0 and W(G 04, G1) # 0, there exists
a G2 = ¢(A\) € D such that (1 + G= ,(e/“°)Gy(e’*?) = 0) and there-
fore such that (G noq(e/90), Go(e/“?)) = 1 for some frequency wy. So,
owc(Gmod, D) =1 O

Remark. If G,,,q € D, we always have W (G 04, Gmod) = 0 and there-
fore (3.9) is always valid.

3.3 Computation of the worst case chordal dis-
tance and worst case v-gap

In the previous subsection, we have defined the worst case v-gap be-
tween the model G,,,¢ and all plants in an uncertainty region D hav-
ing the general structure (2.44). Now we give a procedure to compute
this worst case v-gap dwo(Gmod, D). According to Lemma 3.1, this is
equivalent to finding a procedure to compute the worst case chordal dis-
tance Ko (Gmoa(€’?), D) defined in (3.8), since dywc(Gmod, D) is the
maximum over all frequencies of the worst case chordal distance. In
the following theorem, we show that the computation of the worst case
chordal distance k¢ (Gmod(e’*), D) at a particular frequency w can be
formulated as a convex optimization problem involving Linear Matrix
Inequality (LMI) constraints [17]. An LMI is a matrix inequality of
the form F(() 2 F+ Y1, GF; <0, where ¢ € R? is the variable, and
F;, = FiT € R i =0,...,q are given. Several algorithms that have
practical efficiency have been devised for solving these problems, see
[82]. The LMI problems can be solved using the free ware code SP [82]
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and its Matlab/Scilab interface LMITOOL [32] or the available commercial
Matlab Toolbox, LMI Control Toolbox [36].

Theorem 3.1 Consider a model G.oq and an uncertainty region D

given in (2.44). Then kwc(Gmod(€’%), D) = \/Yopt, where Yopt is the
optimal value of v in the following standard convex optimization prob-
lem involving LMI constraints evaluated at w:

minimize y
over v, T
subject to T > 0 and

Re(a11) Re(ai2) R _Ré
< Re(ajy) Re(az) ) _T( (—R&T §TRS -1 ) <0 (3.10)

where

e a1 = (ZX,ZN — Z]terD — ZBx*ZN + ZB$*$ZD) — ")/(Z}:,QZN +
Z5Q7Zp),

o ajp=Zye— Zyx — Zhex' + Zjxx* —y(ZyeQ + Z75Q),
o ag = ee* —e*r —er* + xr* —y(ee*Q + Q),

e Q=1+z*c and £ = G ppq(e?®).
The worst case v-gap is then obtained as

6WC’(Gmoda D) = mgx K/WC’(Gmod(ejw)a D)

Proof. We prove that the square root of the solution of the LMI opti-
mization problem gives the worst case chordal distance k1 c(Gmod(e7), D)
at some frequency w. The derivation of the worst case v-gap is a direct
consequence of Lemma 3.1.

If we denote the frequency response of the model G,,04(e’*) by z,
and that of any plant G(e/“,§) € D by y(8), then a convenient way to
state the problem of computing the worst case chordal distance at some
frequency w is as follows:

minimize vy such that k(z,y(0))? <~ for all y(§) € D
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The expression (z,y(8))? < v has to be transformed into an LMI
constraint. This can easily be done as proved in the following expres-
sions.

2
|z —y(6)]
(ﬂ TPVt |y(5)|2> ST

wtw +y(0)"y(0) —y(0)"w — 27y (0) —y(1 + " z)(1 +y(6)"y(9)) <0 &

OV (T ) ()
(3.11)

By pre-multiplying (3.11) by (1 + Zpd)* and post-multiplying the
same expression by (1 + Zpd), we obtain:

<6+ZN5>*<1—’Y(1+IE*I) —z >(6+ZN5><0
1+ Zpd —z* ¥z —y(l + z*z) 1+ Zpé

(3.12)
which is equivalent with the following constraint on § with variable +:

5 * a1l ai12 5
(Y (o) (8) < -
with a11, a12 and agy as defined in the statement of Theorem (3.1). Since
d is real, it can be shown that (3.13) is equivalent with

0(0)

- - ~
0 Re(au) Re(alg) 0

(1) (Reoty e ) (1) <0 60

This last expression is equivalent to stating that x(G ,0q(e?“), G(e7, §))?

~ for a particular 6 € U. However, this must be true for all § € U.
Therefore, (3.14) must be true for all § such that:

N
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which is equivalent to the statement “§ € U”.

Let us now recapitulate. Computing k(G moq(€?®), D)? is equiv-
alent to finding the smallest « such that ¢ (§) < 0 for all § for which
p(0) < 0. By the S procedure [55, 17], this problem is equivalent to find-
ing the smallest v and a positive scalar 7 such that 1(d) — 7p(d) < 0,
for all § € R**! which is precisely (3.10). To complete this proof, note
that the worst case chordal distance at w is thus equal to ,/yop; where
Yopt 18 the optimal value of . 0

Remark. Our computation of the worst case v-gap requires thus the
computation of the worst case chordal distance over a frequency grid.

3.4 A robust stability measure for D

In the previous section, the notion of worst case v-gap between a model
G mod and an uncertainty region D has been introduced and a procedure
has been given to compute this distance. This worst case v-gap can
be considered as a robustness measure of D with respect to robustly
stable controller design based on the model G,,,q. We have indeed the
following result.

Proposition 3.2 Consider an uncertainty region D having the struc-
ture given by (2.44) and a model Gppoq. All controllers C' that stabilize
Gmod and that lie in the set

C(Gmod, D) ={C | ba,,,,,c > owc(Gmods D)} (3.16)

are guaranteed to stabilize all plants in the uncertainty region D. It is
to be noted that the stability margin bg,, , c achievable by a controller
C with Gpeq is bounded by bopi(God) defined in (3.6).

Proof. Using the definition of the worst case v-gap given in (3.7), we
see that D is embedded in the uncertainty region {G|0,(Gpmod, G) <
0w c(Gmod, P)}. This theorem is thus a direct consequence of Proposi-
tion 3.1. l

Proposition 3.2 tells us that the worst case v-gap between the model
Gmod and an uncertainty set D is a measure of size of the set D that is
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directly connected to the size of the set C(Goa, D) of G pyoq-based con-
trollers that are guaranteed to stabilize all plants in D. Proposition 3.2
shows also that the smaller dw o (Gpmod, D), the larger is this robustly sta-
bilizing controller set. Thus, the worst case v-gap is a nice and compact
measure of the ability of an uncertainty set D to be robustly stabilized
by a large set of controllers designed from G,,,q and therefore of how
well the uncertainty region D is tuned for robustly stable controller de-
sign based on G,0q4-

It is to be noted that there may be additional controllers outside
the set C(G o4, D) that stabilize all models in D. Indeed, according to
Proposition 3.1, the set C(G 04, D) contains all controllers that stabi-
lize all systems in the uncertainty set {G|d, (Gmod, G) < dwc(Gmods D)}
that embeds D. However, the advantage of this description is that the
size of the set C(God, D) (i-e. dwc(Gmod, D)) is only a function of G 04
and D. In Chapter 4, a necessary and sufficient condition will be given
for the stabilization of all plants in D by a given controller. However,
this necessary and sufficient condition may not be used as a measure of
robust stability for D, as will be shown in the next chapter.

3.4.1 Practical uses of the worst case v-gap

As said above, the worst case v-gap is a nice and compact measure of
how well the uncertainty region D is tuned for robust control design with
respect to G,,04.- In order to present practical uses of this measure, let
us consider the two following situations:

1. We have performed one validation experiment leading to one un-
certainty region D. No model is given for control design.

2. We have performed different validation experiments leading to dif-
ferent uncertainty regions D and somebody has given us a model
G moq for control design.

First situation

In the first situation, a model has to be chosen for control design. This
model G4 is typically chosen equal to the center G(z, 5) of the un-
certainty region D deduced from the validation experiment. The worst
case v-gap Owc(G(z,0),D) can then be used as a tool to “validate the
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validation experiment”. Indeed, if the worst case v-gap is small with
respect to the optimal stability margin by (G(z,0)) (see (3.6)), then the
set C(G(z,8),D) of G(z,4)-based controllers that are guaranteed to ro-
bustly stabilize D is large and the designer will be therefore generally
incited to keep the uncertainty region D: a controller can be designed
from G,,,q and the results of the next chapters can be used to validate
the controller for stability and performance with respect to the “vali-
dated” uncertainty region D. On the contrary, if the worst case v-gap is
large with respect to the optimal stability margin b, (G(z, 5)), then the
set C(G(z,6),D) of G(z,4)-based controllers that are guaranteed to ro-
bustly stabilize D is small. Therefore, even though the set C(G(z,4), D)
is not guaranteed to contain all robustly stabilizing controllers, the de-
signer will be nevertheless generally incited to reject the uncertainty
region D and to perform a new validation experiment in order to obtain
a new uncertainty region Dy, with a larger set of stabilizing controllers.
For this purpose, the designer could e.g. use the guidelines that will be
presented in Section 3.4.2.

Second situation

In the second situation, the worst case v-gap can be used as a tool to
select one uncertainty region among the different uncertainty regions ob-
tained from the different validation experiments, using a robust stability
criterion. In order to compare these uncertainty regions, we have indeed
this first result:

Theorem 3.2 Consider two uncertainty regions D) and D) obtained

from two different walidation experiments. If we have that
5WC’(GmodaD(1)) < 5WC’(GmodaD(2))7 then C(GmodaD(2)) C C(Gmodap(l))'

Theorem 3.2, which directly results from Proposition 3.2, gives us
guidelines to choose the uncertainty region that is best tuned to ro-
bustly stable controller design with respect to G,,,q- These guidelines
are summarized in the following proposition.

Proposition 3.3 Consider t uncertainty regions D@ obtained from t
different wvalidation experiments and a model Gpoq. Then the uncer-
tainty region D* that generates the largest set C(Goq, D) (i = 1...t)
of robustly stabilizing controllers is the uncertainty region:

D* = arg m(lr)l 5w (Gmod, D) (3.17)
'D (3
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Remarks concerning the second situation.

e The choice of the model G,,,,q for the control design is an impor-
tant feature. Indeed, we analyze the robustness properties of the
uncertainty regions D) with respect to controllers designed from
Gmod (and stabilizing it). If the smallest worst case v-gap between
Gnoa and the different D) remains “large”, then the chosen model
G mod 18 not appropriate for a control design procedure for Gy be-
cause the actual 0, (Gmoq, Go) may be too large. A better model
Gmoqg must then be chosen: for example, the center of one of the
uncertainty regions D). This important matter will be further
discussed in Section 3.4.3.

e As already said earlier, the set C (Gmod,D(i)) contains all con-
trollers that stabilize all systems in the uncertainty set
{G16,(Gmods G) < Owc(Gmods P™)} that embeds D).  Thus,
there may be additional controllers outside the set C (Gmod,D(i))
that stabilize all models in D), in that sense, our analysis is
conservative. However, since G,,,q lies typically within all D),
we essentially introduce the same conservatism for each D) and
th(e;‘efore our procedure remains valid for the selection of the best
D,

3.4.2 Consequences for the design of the validation ex-
periment

In the previous subsections, we have shown that the worst case v-gap
between the model G,,,q and an uncertainty region D deduced from an
identification experiment is a good measure to determine if the uncer-
tainty region D is well tuned for robustly stable controller design based
on the model G,oq. Our result therefore gives a meaning to the concept
of identification for robust control: a validation experiment (i.e. an iden-
tification experiment) is “tuned for robust control design” if the worst
case v-gap for the uncertainty set delivered by this validation experi-
ment is small, because it implies that, for that uncertainty set, the set
C(Gmod, D) of robustly stabilizing controllers is large.

Our result gives us also guidelines to design the validation experi-
ment: we should always aim to design a validation experiment leading
to an identified model G,,,q and an uncertainty region D such that the
worst case v-gap between G,,,,q and D is the smallest possible. In order
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to achieve this, the uncertainty distribution delivered by the validation
experiment has to be small in the frequency range where the resolution
of the v-gap metric is the largest i.e. around the cut-off frequency [86].
The validation experiment should therefore be designed such that the
input signal has a large power spectrum around the cut-off frequency of
the true system. Indeed, the uncertainty distribution in the frequency
range is asymptotically inversely proportional to the spectrum of the
input signal in open-loop identification [63] and inversely proportional
to the spectrum of the input signal due to the reference signal in closed-
loop identification [44].

It is to be noted that, in [24], such an idea of minimizing a quality
measure of an uncertainty region to find the best possible uncertainty re-
gion is also proposed in the framework of an iterative scheme. However,
the measure presented in [24] is a function of the controller present in the
loop and is therefore only a measure of quality of the uncertainty region
with respect to that particular controller as opposed to our measure (the
worst case v-gap ) which is controller-independent.

3.4.3 Validation of an a-priori given model G,,,4

As already stated earlier, the worst-case v-gap dwc(Gpmod, D) is an in-
dicator of how well the uncertainty set D is tuned for robustly stable
controller design with a model G,,,q. Therefore, this worst case v-gap
gives not only information about D, but it gives also information about
the model G4 In fact, it is an indicator of the quality of the pair
{Gmoa D} for robust control design. This has the following consequences
for the case where the model G,,,q that will be used for control design
is given.

The model G,,,,4 for control design can indeed either be chosen equal
to the identified model G(z, 5), center of the considered uncertainty re-
gion D or be given. In the second case (i.e. the model G,,,4 is given),
we have really no idea if that model is reliable or not for control de-
sign with respect to the true system Gy. A validation experiment on
Gy leading to a set D and the computation of the corresponding worst
case v-gap dwc(Gmod, P) will help us to assess the quality of G4 for
(robust) control purpose. Indeed, if the obtained worst case v-gap is
relatively small (with respect to bopi(Gmod)), we then know that the
set C(Gmods D) of G oq-based controllers that robustly stabilize D (and
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therefore also the true system Gy) is relatively large. Such result val-
idates the model G,,,4. We can see this result from an other point of
view : if 0w (Gmod, D) is small, then 0, (G4, Go) is also small, since
we have that

0(Gmod» Go) < dwc(Gmod, D).

Using Corollary 3.1, we can therefore conclude that a small oy ¢ (G nod, D)
implies a large set of controllers that stabilizes both G,,,q and Gy.

3.5 A simulation example

In this section, we give an example of the use of the worst case v-gap as a
selection tool for uncertainty regions delivered by validation experiments
(see Section 3.4.1, second situation). For this purpose, let us consider
the following true system Gy and the following model G4 of this true
system.

0.10472~1 + 0.087222 N
u (4
1 —1.55782=1 + 0.57692—2

y=Gou+e=

0.10602~! + 0.09282 2
1 — 1530821 + 0.54672 2

Gmod =

where e is a white noise of variance 0.1. The actual v-gap between
Go and Gpoq 18 0,(Go, Gimoq) = 0.0193. We perform one validation
experiment in open loop and one in closed loop (with the controller
K = (1.27 — 1.042=1)/(1 — 0.6z~ ') in the loop) leading to two dif-
ferent uncertainty regions, each of which contains Gy with probability
0.95. We call these two uncertainty regions D, and D, respectively.
In order to decide which of these uncertainty regions is best tuned for
robustly stable control design based on the model G,,,q, we compute
the measure of robustness of these two uncertainty regions with respect
t0 Gmod, 1-6. dwc(Gmod, Dor) and Swe(Gmod, Der)- For this purpose,
we first compute the worst case chordal distances at each frequency
for D, and D, using the LMI tools developed in Section 3.3. The
worst case chordal distances at each frequency sy (Gmod(e’%), Dyy) and
kw e (Gmod(€79), Dy are represented in Figure 3.2 where they are com-
pared with the actual chordal distance x(Goq(e’®),Go(e??)) between
Gmod and Go.  According to Lemma, 3.1 and since W(Gmod,éol) =
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Figure 3.2: Iiwc(Gmod(ejw),Dol) (dashed), Iiwc(Gmod(BJ ),Dcl) (SOlid) and

K(Gmoa(e7¥),Go(e7?)) (dashdot) at each frequency

W(Gmods écl) =0 (G’ol and G, are the centers of D,; and D, respec-
tively), we can derive the worst case Vinnicombe distances from the
worst chordal distances as follows:

6WC’(GmodaDol) = m(f]i,X ch(Gmod(ejw) Dol) = 0.2464

5WC’(GmodaDcl) = mui)lX Iiwc(GmOd(ej ) Dcl) =0.0384

Therefore, by Proposition 3.3, the set C(G04, D) of controllers sta-
bilizing G,,0q that robustly stabilizes D.; is much larger than the set
C(Gmod, Doy) that robustly stabilizes D,;. To illustrate this statement,
let us design two controllers from the model G,,,,q. These two controllers

are given below with the achieved generalized stability margins:

1.8464 — 1.3647z!
= = 0.2861
G 10454521 UGmoasCy = 0-286

Cy=3 ba,.,co =0.0653

We directly see that the controller C) is guaranteed to stabilize the
plants in the two uncertainty regions since it belongs to both guaranteed
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sets of stabilizing controllers C(God, Dor) and C(Gpod, D) defined in
Proposition 3.2. Indeed:

meod;CI > 5WC’(Gmoda Dol) > 6WC’(Gmoda Dcl)-

However, the controller Cy belongs to C(God, Der) only @ Cy therefore
stabilizes all the plants in D.. As Co & C(Gpod, Dot), it is not guaran-
teed, by Proposition 3.2, to stabilize all plants in D,;. Proposition 3.2
only gives a sufficient condition. To check whether Cs actually stabilizes
all plants in D,;, we use the “necessary and sufficient” test that will
be developed in Chapter 4. This test fails, and therefore Cy does not
stabilize all plants in D, whereas it does stabilize all plants in D, by
Proposition 3.2.

3.6 Conclusions

We have proposed a measure of robust stability for the uncertainty re-
gion D as delivered by prediction error identification. This measure
is the largest v-gap between the nominal model and all plants in the
uncertainty region. We have shown that this measure is computable
frequency-wise using an LMI based optimization problem at each fre-
quency. We have also shown that the smaller the worst case v-gap
between the model and an uncertainty region, the larger is the set of
model-based controllers that are guaranteed by the v-gap theory to ro-
bustly stabilize all plants in the uncertainty region. This measure is
thus an indicator of how well the uncertainty region is tuned for robust
control design with the chosen model. This measure therefore also gives
us guidelines to select the uncertainty region that is best tuned for ro-
bust stability analysis among all available ones. To illustrate the impact
of our results in terms of the connection between identification and ro-
bust control, we return to the example above. With our robust stability
measure for uncertainty sets, we were able to conclude that the G,,oq4-
based controller set that is guaranteed to robustly stabilize D is much
larger than the set that is guaranteed to robustly stabilize D,;. Hence,
the closed-loop identification design that led to the uncertainty set D,
is a much better experiment design than the open-loop design that led
to D,;. The results of this chapter have thus allowed us to establish a
connection between identification design and stability robustness of the
controllers resulting from such design. We have therefore paved the way
to a new research field i.e. PFE identification for robust control.



50

A measure of robust stability for the uncertainty region D



Chapter 4

A necessary and sufficient

robust stability condition
for D

In the previous chapters, it has been shown that a PE identification
procedure allows one to design an uncertainty region D containing the
true system at a certain probability level. This uncertainty region takes
the form of a set of parametrized transfer functions where the param-
eter vector is constrained to lie in an ellipsoid. We have introduced a
measure of this uncertainty region that is connected to the size of the
model-based controllers that are guaranteed (by the v-gap theory) to
stabilize all plants in D. This measure has been proved to be an indica-
tor of how well the uncertainty set D is tuned for robust control design
with respect to G04-

In this chapter, we consider that the tools presented in the previous
chapter has allowed us to select an uncertainty region D and a model
G moq and that a controller C' for the true system has been designed from
the model G,,0q. The problem solved in this chapter is the problem of
finding a necessary and sufficient condition for the stabilization of all
plants in the uncertainty region D by the controller C'. If the controller
C stabilizes all plants in D, we will say that this controller is validated
for stability. The result of this chapter pertains thus to the validation
of one specific controller. It is also important to note that this robust
stability condition is also a condition guaranteeing the stabilization of
the true system G by the controller C.

o1
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Robust stability theory developed in e.g. [34, 31, 92, 68, 53| pro-
vides some necessary and sufficient conditions for the stabilization, by a
given controller C', of all plants in an uncertainty region, provided this
uncertainty region is defined in the general LFT (linear fractional trans-
formation) framework for robust stability analysis. Our contribution
in the proposed stability validation procedure is to show that one can
rewrite the closed-loop connection of the controller C and all plants in
the uncertainty region D obtained from a validation experiment into a
particular LFT that takes into account the parametric description of D
(i.e. the uncertainty part of the obtained LFT is a real vector) and whose
(real) stability radius is exactly computable, using the result presented
in [53, 72]. The proposed approach has the complementary advantage
of being easily extensible to the design of a controller that is assured to
stabilize all plants in D using the result in [73] extended in [6]. Indeed,
[73] and [6] show that several robust synthesis problems for rank-ones
LFT’s (that is the type of LFT’s we here obtain) can be stated in terms
of convex or quasi-convex optimization. It is also to be noted that, since
the uncertainty region has been rewitten as an LFT, p-synthesis (see
e.g. [92]) may also be considered in order to design a controller that is
guaranteed to achieve a certain level of performance with all plants in
D. However, the drawback of this technique is that it is not guaranteed
to converge.

In the previous chapter, we have already given a condition for the
stabilization of all plants in D by a controller. Indeed, we presented
there a set C(G o4, D) of Gpyog-based controllers that are guaranteed to
stabilize all plants in D. If the controller C' designed from G,,,q lies in
C(Gmod, D), then, it stabilizes all plants in D. However, as already said
in Chapter 3, the set C(G 04, D) is not assured to contain all controllers
that robustly stabilize D. Indeed, this controller set only contains all
controllers robustly stabilizing all plants in a larger set ! that embeds
D. The advantage in the present approach is that the obtained robust
stability condition is necessary and sufficient. This is a consequence of
the fact that our new stability results apply directly to the parametrized
set D resulting from the identification step, thereby avoiding the con-
servativeness resulting from the overbounding of D by a larger v-gap
uncertainty set.

li.e. {G|6V(Gm0d7 G) S 6WC(Gmoti7 D)}
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In [72, 57], the authors consider a similar but much simpler struc-
ture than D and show that this simpler structure can be expressed as
an LFT. In this paper, we give a general formulation of this LFT for
general expression of the uncertainty region D.

Other authors have tackled the robust stability problem in the pres-
ence of an uncertainty region defined by a real (parameter) vector from
another point of view (see e.g. [7, 23, 4, 5] and references therein). In
this literature, the stability of an uncertain polynomial is analyzed. For
control purposes, the analyzed polynomial is the denominator of the
closed-loop transfer function. In this approach, the parameters of the
open-loop system are generally assumed to vary in a hypercube (i.e. each
parameter varies in an interval) and not in an ellipsoid like in D. How-
ever, in [7], the treated problem is closer to our problem: the authors
present a procedure that gives, for a given controller, the largest ellip-
soid in the space of the system parameters for which the stabilization of
the closed-loop transfer function denominator is guaranteed. Their ap-
proach uses Euclidean space geometry to project the parameters of the
open-loop system into those of the common denominator of the closed-
loop transfer functions and conversely. This result could have been used
in order to find a procedure to validate a controller for stability. Our
choice for the procedure based on the computation of the stability radius
is motivated by the fact that this procedure uses the general framework
of the robustness theory which allows one to easily extend our robust
analysis approach to robust synthesis using u-synthesis or the results of
[73].

Chapter outline. In Section 4.1, we present a robust stability the-
orem for a real vector uncertainty. In Section 4.2, we design the LFT
framework of all closed-loop connections made up of a plant in an uncer-
tainty set D and a controller. In Section 4.3, using this LFT framework
and the robust stability theorem, we deduce a necessary and sufficient
condition for the robust stabilization of all plants in D by the controller
C'. We finish this chapter by an example (Section 4.4) and some conclu-
sions (Section 4.5).
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4.1 Robust stability for a real vector uncertainty

As said in the introduction, the aim of this chapter is to find a necessary
and sufficient condition for the stabilization of all plants in an uncer-
tainty region D by a given controller. Robust stability theory provides
such necessary and sufficient conditions [34, 31, 92, 68, 53]. But for the
application of robust stability results, it is required that the closed loop
connections of this controller to all plants in the uncertainty region be
rewritten as a set of loops that connect a known fixed dynamic matrix
M (z) to an uncertainty part A(z) of known structure that belongs to a
prescribed uncertainty domain. In this section, we recall an important
result of robust stability analysis [72, 53] in the case when the uncer-
tainty part A(z) is assumed to be a real vector.

Let us consider a set of loops [M (z) (] that obey the following system
of equations (see Figure 4.1).

p=>q

{ q=M(z)p (4.1)
In this set of loops, it is assumed that M(z) € RH,, is a known fized
row vector of size b and that the uncertainty part S is a real vector
€ R"! that varies in the following uncertainty domain: |B|z < 1. ||
represents the 2-norm of the vector g i.e. |Gl = /BT 0.

B

A

Y

M

Figure 4.1: set of loops [M(z) f]

The robust stability theorem linked to the set of loops [M(z) 3] is
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now summarized in the following proposition.

Proposition 4.1 If M(z) € RHy, and B € R, then the loops [M(z) f]
given in (4.1) are internally stable for all § € R™ such that |B|; < 1
if and only if

max p(M(e)) < 1 (4.2)

The value (M (e/%)) is called the stability radius of the loop [M () A]
at the frequency w and is defined below.

Definition 4.1 (stability radius [72, 53]) For M (e/*) a known com-
plex matriz € C™° and B € RY, the stability radius p(M(el*)) is
defined as follows if Im(M (e¥)) # 0:

and (M (e7%)) = |M|s, if Im(M) = 0. The stability radius is in fact
the structured singular value lmked to the loop [M(z) B]: u(M(e'™)) is
the inverse of the smallest value of |Bla such that 1 — M (/)3 = 0.

Remarks. In [72], the stability radius at a given frequency is defined
for a real uncertainty that is a row vector. The case of a column vector
is similar and yields Definition 4.1. Note also that the stability radius
is discontinuous only at the frequencies where M is real [71].

4.2 LFT framework for the uncertainty region
D and a controller C

In order to apply Proposition 4.1 to check the stabilization of all plants
in the uncertainty region D described in Proposition 2.5 by some model-
based controller C, the first step is to find the particular set of loops
[M(z) B] that correspond to the closed-loop connections of all plants in
D with C'. This first step can be achieved using the following theorem.

Theorem 4.1 (LFT framework for D) Consider an uncertainty re-
gion D of plant transfer functions given by (2.44) and a controller C(z)
whose numerator and denominator are denoted X(z) and Y (z), re-
spectively (C(z) = X(2)/Y(z)). The set of closed-loop connections
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[G(z,0) C] for all G(z,0) € D can be rewritten into the set of loops
[Mp @] which obey the following system of equations

{ p=qq
q= Mp(z)p

where the uncertainty part ¢ is a real column vector of size k that varies
in the uncertainty domain: |$la < 1, and where the part Mp(z) is a row
vector of size k defined as :

—(Zp + X(Z'NifeezD))T—l
Mp(z) = YoreX (4.4)

=

with T a square root of the matriz R defining U in (2.44) : R=TTT.

Proof. The closed-loop connection of C' and a particular plant G(z, ) =
(e + Zn06)/(1 + Zpd) in D (see (2.44)) is given by

_ e+Zn©d

Y= s

(4.5)
u=—Cy

Let us rewrite (4.5) in a convenient way for the LFT formulation:

Zn—eZp)d
= (et B (4.5)
u=—Cy

By introducing two new signals ¢ and p;, we can restate (4.6) as

q\ _ —Zp 1 p1

Y Zny—eZp e U (4.7)
p1 = 0q
u=—Cy

By doing so, we have isolated the uncertainty vector § from the known
transfer matrix H(z) and the controller C'(z), as is shown in Figure 4.2.

The variables y and u are now eliminated from (4.7), yielding the fol-
lowing system of equations representing a loop which is of the type (4.1)
required by Proposition 4.1.
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A

o

H(2)

A

-C(2)

Figure 4.2: Equivalent loop for [G(z,d) C]

p1 = 0q
Ml(z)
~ C(} ~ )1 (4.8)
_(_z. _“\&N —€ZD)
q=(-Zp L+ eC ) P1

The system (4.8) is equivalent to the closed-loop connection of a
particular G(z,6) in D with the controller C. In order to consider the
closed-loop connections for all plants in D, we have to consider all ¢ €
R**! lying in the ellipsoid U given by:

U=1{0|(6—-08TR(—0b) <1} (4.9)

This last expression is the uncertainty domain of the real uncertainty
vector §. This uncertainty domain is not quite standard. Therefore, the
set of loops [Mi(z) 6] with § € U can not be immediatly used in this
form in Proposition 4.1. A last step is then to normalize the uncertainty
domain using a method presented e.g. in [72, 57] . Using R = TTT, we
now define the real vector ¢ € R¥*! as follows:
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$2T(5 ). (4.10)
Using now (4.9) and (4.10), we have

SeUe¢plp<le=|p<1 (4.11)

¢ is therefore an uncertainty vector with same structure as § (i.e. ¢ €
R* *1) but with an uncertainty domain as required by Proposition 4.1.
The uncertainty vector ¢ is therefore replaced by ¢ in (4.8). For this

purpose, we first denote p 2 ¢q. Since § = o+ T~ ¢, we have

p=dq
. (5 M'D(Z)
{ p1_—Mq At ! (Z X(ZN*eZD))Tfl‘
q = Mi(z)p1 gt “Unt Ty T
ST 1+ (2 + XEaoh)

(4.12)
The set of loops [Mp(z) ¢] for ¢ € R¥*! and |¢|p < 1 is therefore
equivalent to the set of closed-loop connections [G(z,d) C] for all plants
G(z,0) in D. This completes the proof. O

4.3 Robust stability condition for the uncer-
tainty region D

Theorem 4.1 allows us to “transform” our problem of testing if the con-
troller C' stabilizes all the plants in the uncertainty region D into the
equivalent problem of testing if the set of loops [Mp ¢] are stable for
all real vector ¢ € RF*! such that |¢|p < 1. This equivalent problem
is the one which is treated by Proposition 4.1. Therefore, using Propo-
sition 4.1 and Theorem 4.1, we can now formulate our main stability
theorem.

Theorem 4.2 (robust stability condition) Consider an uncertainty
region D of plant transfer functions having the general form given in (2.44)
and let C' be a controller that stabilizes the center G(z,g) of D. All the
plants in the uncertainty region D are stabilized by the controller C if
and only if

max jo(Mp (7)) < 1 (4.13)
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where the stability radius pn and Mp(z) are defined in Definition 4.1 and
in (4.4), respectively.

Proof. Mp(z) lies in RHy, since its denominator is the denominator
of the sensitivity function of the closed loop [G(z,d) C] which is sta-
ble by assumption. Therefore, this theorem is a direct consequence of
Proposition 4.1 and Theorem 4.1. [l

This theorem gives a necessary and sufficient condition for the sta-
bilization of all plants in D by a controller that has been designed from
the chosen model G,,,4. This necessary and sufficient condition involves
the computation at each frequency of the stability radius u(Mp(e/%)).
This computation is achieved using Definition 4.1.

Important remark. We now discuss why this necessary and suffici-
cient robust stability result is not used to compute a robust stability
measure for the set D and why we have used the worst case v-gap for
this purpose (see Chapter 3). Let us define the following quantity:

fimin (D) = min (maxu(MD(ej“))> (4.14)

C stabilizing G(z,0) ¥ ¥
Recall that Mp(z) is a function of C' and of D. Using the definition of
tmin (D) and Theorem 4.2, we can state that all controllers stabilizing

G(z,0) that lie in
{C | pmin(D) < max p(Mp(e')) < 13, (4.15)

stabilize all plants in D. Moreover the set (4.15) is the set that con-
tains all these robustly stabilizing controllers. As a consequence, the
quantity fimin (D) is thus an indicator of how well the uncertainty region
D is tuned for robustly stable controller design. Indeed, the smaller is
tmin (D), the larger is the set of robustly stabilizing controllers. More-
over, it is a better indicator than the worst case v-gap since the set (4.15)
contains all robustly stabilizing controllers as opposed to the set (3.16).
However, to our knowledge, this indicator pim, (D) has not been proved
computable in polynomial time in the case of an uncertainty region like
D. That is why we have opted for the worst case v-gap as measure of
robust stability for the set D. It is nevertheless to be noted that our
current research aims at applying the results of [73] to compute fiyin (D).
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4.4 Simulation Example

To illustrate our results, we present an example of controller validation
for a model identified in closed-loop. Let us consider the following true
system G with an Output Error structure:

Go

0.10472~1 +0.087222
— u
1 —1.55782"1 +0.576922

y +e(t),
where e(t) is a unit-variance white noise. The sampling time is 0.05
second.

Validation experiment. Let us perform a validation experiment in
closed-loop using the indirect approach (see Section 2.2.4). Let us thus
identify an unbiased model T (é ) of the true closed-loop transfer function
T, (defined in (2.29)) by collecting 1000 reference data r1(t) and output
data y(t) on the closed loop made up of Gy and the controller K = 3 :

u = 3(r — y). This controller stabilizes Gy. It yields:

. 0.3179z2~"' +0.2783272
TE) = — —
1—1.21292-1 4+ 0.82512

The open-loop model G (&) corresponding to T'(§) is equal to

G(é) = 1 T(€)  0.10602" +0.09282~2
KT 1-T() 1—1530827" 4 0.5467z2

Following the procedure presented in Section 2.2.4.2, we can design
an uncertainty region D;.; from the estimated covariance matrix P¢ of
the parameters of the closed-loop model T(é) The region containing
the true system G with probability 0.98 is given by

Diq ={G(&) | G(&) = and § € Uja}

K(1-T(¢))

where U = {€ | (£ — é)TPgl(g —§) < 12.6}. Tt has been shown in
Chapter 2 that D, can be expressed in the general structure (2.44) of
the uncertainty regions delivered by PE identification.

‘The worst case v-gap Swe(G(€), Diy) between the identified model
G(&) and the set D; is here equal to 0.1015 which is relatively small
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with respect to the optimal stability margin by, (G(€)) = 0.5719. The

set C(G(§),Dia) of G(&)-based controllers that are guaranteed to ro-
bustly stabilize D;.; is thus large and we therefore decide to use G(§) as
model for control design and D, for the validation of the controller C

~

that will be designed from G ().

A

Control design. The model G(&) deduced from the identified closed-
loop transfer function is used to design a controller with a lead-lag filter:
1.8464 — 1.36472"
O) = 1 Gapass 1
With this controller, the designed closed-loop [G(€) C] has a stability

margin of 57 degrees and a gain margin of 10dB. The cut-off frequency
we is equal to 0.5 which corresponds to a real frequency of 11 rad/s.

Before applying this controller C(z) to the true system, we verify
whether it stabilizes all plants in the uncertainty region D;, deduced
from the validation experiment, using the results presented in this chap-
ter.

Validation of C' for stability. For this purpose, we construct the
row vector Mp, ,(z) defined in Theorem 4.1 and we compute the corre-
sponding stability radius u(Mp,,,(e’*)) at all frequencies. According to
Definition 4.1, we know that u(Mp, ,(€’“)) has a different expression at
the frequencies where Mpicl(ej“’) is real. It occurs here at w = 0 and

w = 7. The stability radii at these two frequencies are:
p(Mp., (¢7%)) = 0.0962 and p(Mp,,,('™)) = 0.0340

The stability radii at the other frequencies (i.e. in (0 7)) are plotted in
Figure 4.3.

The maximum over all frequencies in [0 7] is 0.1313. Since this
maximum is smaller than 1, we conclude that C'(z) stabilizes all plants in
D and therefore also the true system Gg. In other words, the controller
C(z) is validated for stability.

4.5 Conclusions

In the previous chapter, an uncertainty region D has been deduced from
a validation experiment (i.e. a PE identification procedure with unbi-
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Omega

Figure 4.3: pu(Mp,_,(e’*)) in (0 )

ased model structure). In this chapter, we have developed a tool for
the robust stability analysis for the uncertainty region D. This tool is
a necessary and sufficient condition for the validation of a controller for
stability that is to say a necessary and sufficient condition for the sta-
bilization of all plants in D by this controller. This tool gives therefore
a condition for the stabilisation of the true system G by this controller
(modulo the chosen probability level for the presence of G in D).

The necessary and sufficient condition has been deduced by recasting
the general structure of the uncertainty region D in an LFT framework
taking into account the parametric description of D and for which the
stability radius is exactly computable.



Chapter 5

Worst case performance
in D

In the previous chapter, we have developed a robust stability analysis
tool for the uncertainty region D as delivered by a validation experi-
ment. This tool takes the form of a necessary and sufficient condition
for the stabilization of all plants in D by a given controller. In this
chapter, we will develop a robust performance analysis tool. For this
purpose, we will again consider an uncertainty region D and a model
G mod from which we have designed a controller C' and we will propose
an LMI-based optimization problem that computes exactly the worst
case performance achieved by the considered controller C' over all plants
in the uncertainty region D. The controller C' is then said wvalidated for
performance if the worst case performance is better than some threshold
value. As in the previous chapter, the result presented in this chapter
pertains to the validation of one specific controller. It is also important
to note that the worst case performance is of course a lower bound of
the performance achieved by C over the true system G, since Gy lies
in D.

Our robust performance analysis tool is thus based on the compu-
tation of the worst case performance of a closed-loop made up of the
considered controller and a system in the uncertainty region D. The
performance of a particular loop made up of the controller C' and a
plant in D is here defined as the largest singular value of a weighted
version of the matrix containing the four closed-loop transfer functions
of this loop. Our definition of the worst case performance is thus very

63
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general and, by an appropriate choice of the weights, allows one to de-
rive most of the commonly used worst case performance measures such
as e.g. the largest modulus of the sensitivity function. Our contribution
is to show that the computation of the worst case performance can be
formulated as an LMI-based optimization problem. The LMI formula-
tion of the problem uses the fact that the uncertainty part (i.e. the real
parameter vector) of the uncertainty region D appears linearly in the
expression of both the numerator and the denominator of the systems
in the uncertainty region D and, as a consequence, also appears linearly
in the expression of the different closed-loop transfer functions.

Our approach to compute the worst case performance differs signifi-
cantly from the usual approach proposed in e.g. [33, 35]. In these papers,
the computation of the worst case performance in an uncertainty region
described by an LFT is performed using the computation of a quantity
v. The quantity v is an extension of the structured singular value pu.
However, [33] and [35] only give a way to compute this quantity v for
a limited amount of parametric uncertainties. The case of an uncer-
tainty given by a real vector (such as in our uncertainty region D) is
not tackled. This case is nevertheless tackled in e.g. [5, page 402]. In
[5], the authors give a procedure to compute the worst case performance
in uncertainty regions defined by a real vector that is constrained to lie
in a hypercube. Their procedure, which is an extension of a theorem
presented in [18], is based on the fact that the difficult computation of
the worst case performance in such uncertainty region can be achieved
with a fixed number of simple optimization problems with one parame-
ter. However, this procedure can not be used for the computation of the
worst case performance in D since the real vector in D is constrained
to lie in an ellipsoid and not in a hypercube. The contribution of our
approach is therefore to give a solution for the computation of the worst
case performance in the case of an uncertainty region defined by a real
vector that is constrained to lie in an ellipsoid (and that appears lin-
early both in the numerator and the denominator of the systems in the
uncertainty region).

Chapter outline. In Section 5.1, we present the general criterion mea-
suring the worst case performance achieved by a controller over all plants
in an uncertainty region D. In Section 5.2, we show that more partic-
ular worst case performance levels can be deduced from this general
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criterion. In Section 5.3, the LMI-based optimization problem allowing
one to compute the worst case performance is presented. We finish by
a simulation example (Section 5.4) and some conclusions (Section 5.5).

5.1 The general criterion measuring the worst
case performance

As said in the introduction, the aim of this chapter is to find a procedure
to compute the worst case performance achieved by a given controller C
over all plants in an uncertainty region D having the general structure
given in (2.44). In this section, we will define the criterion measuring
the worst case performance. In order to define this criterion, let us first
define the performance of a loop [C G].

There is no unique way of defining the performance of a closed-loop
system. However, most commonly used performance criteria can be
derived from some norm of a frequency weighted version of the matrix
T(G, C) of the closed-loop system [C' G] made up of G in feedback with
the controller C.

Definition 5.1 Given a plant G(z) and a stabilizing controller C(z),
the performance of a closed-loop system [C' G| is defined as the following
frequency function

J(G,C W, Wryw) = 0y (WIT(G(¥),CE@*)W,)  (5.1)

where Wi(z) = diag(Wy1, Wi2) and W,.(z) = diag(Wy1, Wyo) are diagonal
weights, o1(A) denotes the largest singular value of A, and T(G,C) is
the transfer matriz of the closed-loop system defined in (3.3).

The worst case performance criterion over all plants in an uncertainty
region D is then defined as follows.

Definition 5.2 Consider an uncertainty region D of systems G(z,9)
with 6 € U whose general structure is given in (2.44). Consider also a
controller C(z). The worst case performance achieved by this controller
at a frequency w over all systems in D is defined as:

JWC(Da C, W, W,, w) = G(rzn(%)éD o1 (WlT(G(@jw, (5), C(@Jw))Wr) . (52)

Note that Jyy¢ is a frequency function : it defines a template. Jy ¢ has
thus to be computed at each frequency.
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5.2 More specific worst case performance levels
derived from the general criterion

In the previous section, we have defined the performance of a closed
loop and the worst case performance achieved by a controller C' over all
plants in D in a very general way. In this section, we will show that the
criterion (5.2) allows one to define more specific worst case performance
levels.

In [25], the performance of a loop [C' G] is defined as || W;T'(G, C)W; |-
In this framework, the nominal performance of the designed loop [C' G 04]*
is therefore || W/ T (Gmod, C)W: ||oo and the worst case performance for
an uncertainty region D is the maximum over all frequencies of the gen-
eral criterion Jy (D, C,W;, W,,w).

A more fundamental way of defining the performance of a closed loop
[C' G] is that proposed for the first time in [89]. The performance can
be “measured” by the shape of the modulus of the frequency response
of the different closed-loop transfer functions (i.e. T11(G,C), T12(G,C),
T51(G,C) and Ty (G, C) defined in (3.3)). Let us take the example of
the sensitivity function T (G, C) to motivate this choice. The modu-
lus of the frequency response of Ty (G, C) at a particular frequency w
gives the rejection rate of an output disturbance at the frequency w.
Furthermore, the bandwidth of this frequency response gives an idea of
the rejection time for constant disturbance rejection. The importance
of the resonance peak is also an indication of the overshoot in constant
disturbance rejection.

If the performance is defined as the modulus of the frequency re-
sponse of one of the transfer functions Tj; (i,7=1,2), the worst case
performance in the uncertainty region D is defined as the largest mod-
ulus, over all G(z,d) € D, of the corresponding closed-loop transfer
function 7j;. Let us now define this worst case performance related to
Ti; (i,7=1,2) more formally.

Definition 5.3 (The worst case performance for Tj;) Consider an
uncertainty region D given by (2.44) and containing all systems G(z,0)
with 6 € U. Consider also a controller C(z) and the closed-loop transfer

'Recall that G,n0q is the model from which we have designed C.
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function Ty; (i, j=1,2) defined in (3.8). The worst case performance for
T;j is the following frequency function :

(. Ty) = e [T(.0)]. (5.3)

where Tj;j(z,0) = Tij(G(z,6),C(2)) and |A| denotes the modulus of A.

For instance, if we choose the sensitivity function The, tp(w,Th2)
provides the lowest rejection rate of a perodic output disturbance at w,
the minimal bandwidth and the maximal resonance peak over the set
of closed-loop systems composed of the controller C' and all plants in
D. These worst case values must be compared with the static error,
the bandwidth and the resonance peak of the sensitivity function of the
designed closed loop [C' G4

The worst case performance for T;; can be derived from the compu-
tation of the general criterion defined in (5.2). This property is summa-
rized in the following proposition whose proof is trivial.

Proposition 5.1 The worst case performance for the closed-loop trans-
fer function Tjj i.e. tp(w,Tij) is equal to the general criterion Jy ¢ when
the following weights are used.

Wl:(‘f(()i) 1—0f(i)> W’":(fgj) 1—?1‘(3’)) (54)

where f(z) =1 ifz =1 and f(x) =0 if z = 2.

5.3 Computation of the general criterion

The general criterion measuring the worst case performance level has
been defined in Section 5.1. In Section 5.2, more specific worst case
performance levels have been shown to be derivable from this general
criterion by appropriately choosing the diagonal weights W, and W;.
We now present a procedure for the computation of the general criterion
Jwe(D,C,W;, W,,w) at a given frequency w. This computation boils
down to an optimization problem involving Linear Matrix Inequality
(LMI) constraints [17], as shown in the following theorem.
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Theorem 5.1 Consider an uncertainty region D defined in (2.44) and
a controller C(z) = X(2)/Y (2) 2. Then, at frequency w, the criterion
function Jwo(D,C,W;,W,,w) is obtained as

ch(D, C,VVl,Wr,w) = \/Yopt> (55)

where yopt 45 the optimal value of vy for the following standard convex
optimization problem involving LMI constraints evaluated at w:

minimize vy
over v, T
subject to >0 and

(o) Ree )= (g s )<

(5.6)

where

o an = (ZyWiWnZn + ZpWiEWieZp) — v(QZ1 Z1)

o aip = ZyWiWine +WiEWinZh — v(QZ1 (Y +eX))

o ay = e W Wne+ WiEWi —y(Q(Y +eX)*(Y + eX))

o Q=1/(X*"W} WX +Y*W:5W.Y)

o 71 =X7ZNn+YZp.
Proof. In order to ease the establishment of the proof, we rewrite the
weighted matrix T,(z, ) = W T(G(z,9),C(z))W,, using the definition

of the closed-loop transfer matrix 7" in (3.3) and the expression of G(z, d)
in (2.44):

VV”X(e + ZN(S)WH W”Y(e + ZN(S)WTQ
WX (1 + Zp&)We WY (1 + Zpd)Wys

Tw(z,9) = Y +eX + (XZy + Y Zp)d

(5.7)

It is important to note that T, (z,0) is of rank one. As a result (5.7) can
be written as follows:

2X(z) and Y (2) are the polynomials corresponding to the numerator and to the
denominator of C(z), respectively
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Wiy (e+Znd)

Tw(z, (5) = ( %;fﬁ‘%il(g) ) ( Xer YWTZ ) (58)
Y+eX+Z16

with Zy = XZn + Y Zp. Using the above introduced notations, we can
now state that proving Theorem 5.1 is equivalent to proving that the
solution vy of the LMI problem (5.6), evaluated at w, is such that:

Vv Yopt = rglea[}( 01 (Ty(e*,6)) Yopt = rgleag( M (Ty(€7,6) T (€, )

where U = {6 | (6—6)TR(6—36) < 1}, and where o1 (A) and A (A) denote
the largest singular value and the largest eigenvalue of A, respectively.

An equivalent and convenient way of restating the problem of com-
puting maxgsep A\ (T (€79, 0)* T (€%, 6)) is as follows:

minimize vy such that A (T (', 8)* T, (', 6)) —y < 0 Vo e U.

Since T, (e7*, §) has rank one, we have:

M (Tw(7%,8) Ty (e7¥,6)) — 7 < 0 =

W11(6+ZN(5) * Wll(6+ZN5)

Y+eX+7Z10 Y+eX+7Z16 * * * * _

Wis(14Zp9) Wit 7zp8) | (XTWEWX+Y " WEWY)—y <0 <
YreX+Zid Y+teX+Z10

Y+eX+Z10 T 0 Y+eX+Z10
Wi (1+Zpo) 2 Wis(1+Zpd) <0 (5_9)
Y+eX+7Z16 0 _7Q Y+eX+2Z10

1 1

where Q = 1/(X*W W X + Y*WLW,2Y). By pre-multiplying (5.9)
by (Y + eX + Z19)* and post-multiplying the same expression by (Y +
eX + Z10), we obtain:

*

Wll(e—i—ZNé) I 0 VVH(B-FZN(S)
Win(1 + Zpd) < 02 0 > Wi(14 Zpd) | <0, (5.10)
Y +eX + Z,0 v Y +eX + 7,0

which is equivalent to the following constraint on J with variable -y :
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) * allr a12 0
(1> <GT2 a22><1><0’ (511

an = (ZyWnWnZn + ZpWiWieZp) —v(QZi Z1)
a1 = ZyWiWie +WiEWi 25, —v(QZ7 (Y + eX))
agp = €W)iWpe + WiEWip —y(Q(Y +eX)* (Y +eX)).

where

Since 0 is real, it can be shown that (5.11) is equivalent with
(9)
s\" Re(a11) Re(ai2) 5‘
11 12
( 1 ) ( Re(ajy) Re(a) > ( 1 > <Y (512
This last expression is equivalent to stating that A (T}, (e, §)* Ty, (e7*, 6)) —

v < 0 for a particular § in U. However, this must be true for all 6 € U.
Therefore (5.12) must be true for all § such that

p(9)

A

N

T A
0 R —R6 )
. A <0 5.13
() o s ) (7) (>:13)
which is equivalent to the statement “6 € U”.

Let us now recapitulate. Computing maxscyr A1 (T, (e7%, 6)* Ty (7%, 8))
is equivalent to finding the smallest v such that () < 0 for all §
for which p(6) < 0. By the S procedure [55, 17|, this problem is
equivalent to finding the smallest v and a positive scalar 7 such that
p(8) —7p(8) < 0, for all § € R¥*!| which is precisely (5.6). To complete
this proof, note that since Ai(Ty(e’%,8)*Ty(e7%,68)) = o2 (Tw(e’?,0)),
the value maxscrr o1 (Typ (e7¢, 6)) at w is equal to opts where Yo is the
optimal value of ~. 0

5.4 Simulation example

In order to illustrate the results of this chapter, let us reconsider the
example presented in Section 4.4 of the previous chapter. Recall that

the controller C' designed from the identified model G(§) has already
been validated for stability. Indeed, we have checked that it stabilizes
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all systems in the uncertainty region D;, deduced from the validation
experiment. Let us now validate this controller C' for performance. Sta-
bilization does indeed not imply good performance with all plants in
D;¢ (including the true system).

In order to verify that C gives satisfactory performance with all
plants in D;.;, we choose the sensitivity function The as performance in-
dicator and we compute the worst case performance level tp, , (w, T52) for
Tyy at each frequency. This can be done by computing Jyw ¢ (D;eq, C, Wi,
W,,w) using Theorem 5.1 with the particular weights W; = W, =
diag(0,1). The worst case modulus of all sensitivity functions over
Dieq is represented in Figure 5.1. In this figure, the worst case per-
formance level tp, ,(w,Th2) is compared with the sensitivity functions
of the designed closed loop [C' G(£)] and of the achieved closed loop
[C Gy]. From tp,,,(w,T>2), we can find that the worst case static error
(=tp,,,(0,Tr)) resulting from a constant disturbance of unit amplitude
is equal to 0.1692, whereas this static error is 0.0834 in the designed
closed-loop. The achieved static error is 0.1017. Using tp,, (w, Ths), we
can also see that the bandwidth of w, = 0.5 in the designed closed-loop
is preserved for all closed loops with a plant in D;,; since tp, , (w, Ta2) is
equal to 1 at w, >~ 0.5. The difference between the resonance peak of
the designed sensitivity function ( i.e. max, || Th(G(€),C) ||= 1.6184)
and the worst case reasonance peak achieved by a plant in D,y ( i.e.
max,, tp,, (w, Trz) = 1.7075) also remains small. Note that the actually
achieved resonance peak ( i.e. max, || Tb2(Go,C) ||) is equal to 1.6229.

We may therefore conclude that the controller C' is validated for
performance since the difference between the nominal and worst case
performance level remains very small at every frequency. Since the con-
troller C' has now been validated for stability and for performance, one
would confidently apply the controller to the true system G, assuming
that the nominal performance is judged to be satisfactory.

5.5 Conclusions

In this chapter, we have developed a robust performance analysis tool for
the uncertainty region D as delivered by a PE identification procedure.
Our tool is based on the computation of the worst case performance



72

Worst case performance in D

Figure 5.1: tp.,(w,Tp2) (solid) and modulus of the designed sensitivity
function Th (G (&), C) (dashed) and actually achieved sensitivity function

T22(Go, C) (dashdot)

achieved by a given controller over all plants in such uncertainty region.
We have defined this worst case performance in a very general way and
have shown that its computation at each frequency boils down to an
LMI-based optimization problem.

This worst case performance is a lower bound for the performance

achieved by the considered controller over the true system G (modulo
the chosen probability level for the presence of G in D).



Chapter 6

Practical simulation
examples

Let us summarize what we have achieved until now. In Chapter 2, we
have deduced an uncertainty set D containing the true system at a cer-
tain probability level from a validation experiment i.e. a classical PE
identification procedure. In Chapter 3, we have introduced a robust
stability measure of that uncertainty set. This measure is connected to
the size of the controller set that is guaranteed by the v-gap theory to
robustly stabilize D and is therefore an indicator of how well the un-
certainty region D is tuned for robust control design. In Chapter 4 and
Chapter 5, we have presented a procedure to validate a controller for
stability and for performance with respect to such uncertainty region
D. We have indeed given a necessary and sufficient condition for the
stabilization of all plants in D by a given controller and we have estab-
lished an optimization problem in order to compute exactly the worst
case performance achieved by this controller over all plants in D.

In this chapter, we present two illustrations of the practical use that
could be made of our results. As opposed to the examples presented in
the previous chapters, these are more realistic in the sense that they rep-
resent real-life systems and the methodology is applied to these systems
“from the beginning to the end”. The first illustration is performed on
the widely publicized Landau benchmark transmission system [59]. This
benchmark represents only one facet of a control application, namely a
tracking problem with a step disturbance rejection objective in an essen-
tially noise-free environment. To make our presentation complete, we

73
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have also applied our methodology to a typical industrial process con-
trol application, in which the main objective is stochastic disturbance
rejection. In the first illustration , we choose the identified model as
model G,,,q for control design. In the second illustration, the model for
control design is given a-priori.

6.1 Flexible transmission system

6.1.1 Problem setting

We consider as unknown true system the half-load model of the flexi-
ble transmission system used as a benchmark in a special issue of the
European Journal of Control: see [59].

0.10276 + 0.181232~"

G — 3
o(2) ® 1-1.991852 1 + 2.202652 2 — 1.840832 3 + 0.894132 %
L3 By(2)

Ag(2)
The sampling period is 0.05s. The output of the system is subject to
step disturbances filtered through Hy(z) = Ao;z' This means that the
plant can be seen as a nonstandard ARX system described by

Ao (2)y(t) = 27 Bo(2)ul(t) + p(t) (6.1)

where u(t) is the input of the plant, y(t) its output and p(t) a sequence
of step disturbances with zero mean and variance 0'12). From a stochastic
point of view, p(t) is equivalent, up to second order moments, with
ﬁe(t) where A(z) = 1 — 27! and e(t) is a sequence of Gaussian white
noise with zero mean and appropriate variance. Hence, a standard ARX
description of the plant is given by

Ao(2)A(2)y(t) = 27> Bo(2) A(2)u(t) + e(t), (6.2)

(1>

and the standard prediction error identification algorithm for ARX mod-
els can be used to identify the system, provided the data are prefiltered
by A(z).

Objective. Our objective is to apply our methodology to the true
flexible transmission system G in order to verify that a controller C,
satisfying a number of specifications with an identified model, satisfies
also these specifications with the unknown G. These requirements are:
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e stability of the loop [C' Gy

e a maximum value of less than 6 dB for the sensitivity function
TQQ(G(), C) = 1/(1 + G()C)

e rejection of the step output disturbances p(t) filtered by 1/A
within 1.2s (for 90% rejection of the measured peak values).

These specifications are some of the specifications of the benchmark [59].

6.1.2 Validation experiment

Since the true system is unknown, a first step in our methodology is
to perform a validation experiment on the true system Gg in order to
identify a model G,,,q for the true system Gy and in order to construct
an uncertainty region containing the true system Gy at a certain prob-
ability level, say 95%. We will here perform the validation experiment
in closed loop using a direct approach (see Section 2.2.4.1).

In order to perform a validation in closed loop, we need to con-
nect a controller K in feedback with Gy. The controller K is here
chosen as the one obtained by Landau et al. using a combined pole
placement /sensitivity function shaping method [58]. Its feedback part
is described by

0.401602 — 1.0793782~ " + 0.2848952 72 4 1.35822423
1 —1.0311422=1 —0.9951822~2 + 0.7520862~3

—0.9865492~* — 0.2719612~° + 0.3069372~6

10.7107442~% — 0.2422972—5 — 0.1942092—6

K(z) =

(6.3)

It also has a feedforward part that we shall not consider here (since we
will excite the closed-loop system with the signal r9(¢) in Figure 2.1).

The closed-loop system [K Gy] is excited by means of a reference
signal ro(t) injected at the input of Gy (see Figure 2.1). The signal
r2(t) is chosen as a PRBS with variance o2, = 0.5541, while the output
step disturbances p(t¢) are simulated as a random binary sequence with
variance 012) = 0.01 and cut-off frequency at w = 0.17 (normalized fre-
quency). A realization of ry(t) and p(t) are shown in Figure 6.1. The
disturbance p(t) is filtered by 1/A(z) and added to the output of the
system. 256 data samples y(t) and u(t) (¢t = 1...256) are measured, and
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Figure 6.1: A realization of r9(t) (dashed) and p(t) (solid)

a model G(z,d) with the same ARX(4,2,3) structure as Gy is identified
after prefiltering these data by A(z):

~

Gmoa = G(2,0) = P

0.1016 4+ 0.1782z~!

1—1.9862"1 +2.187272 — 1.8242=3 + 0.88972—*"

(6.4)

This identified model G, Will be used in the sequel as nominal model
in order to find a controller C' that satisfies the specifications presented
at the end of Section 6.1.1 when C'is applied to G,q4-

The estimated

covariance

matrix of the

parameter

vector

0= ( —1.98 2.187 —1.824 0.8897 0.1016 0.1782 )T is given by:

0.0840
—0.1166
0.1024
—0.0532
—0.0062
—0.0027

Ps =10"3x

—0.1166
0.2145
—0.1966
0.1009
0.0057
0.0008

0.1024
—0.1966
0.2184
—0.1197
—0.0074
—0.0041

—0.0532
0.1009
—0.1197
0.0853
0.0063
0.0037

—0.0062
0.0057
—0.0074
0.0063
0.0064
0.0021

—0.0027

0.0008

—0.0041

0.0037

0.0021

0.0061
(6.5)

The 95% uncertainty region D, around G,.q = G(2, 5) can be ex-
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pressed as follows:

Dy = {G(2,0) | G(z,6) = % with €Uyt (6.6)

Ug=1{6 e R | (6 - 0)TP (6 - 6) < 126}, (6.7)

where

Zn(z)=(0 0 0 0 273 z7*)
Zp(z)=(z1' 272 2% 24 0 0).

The size x of the ellipsoid U, is here equal to 12.6 since Pr(x?(6) <
12.6) = 0.95. This uncertainty region D, contains the true system'
since we have that

(4 - S)T Pt (80 — 8) = 4.7050 < 126

where dy = ( —1.99185 2.20265 —1.84083 0.89413 0.10276 0.18123 )T
denotes the parameter vector of the true system:

Z Ny

Gop=—.
0 14+ Zpdo

(6.8)

6.1.3 Robust stability measure of D,

The results of Chapter 3 are now used in order to verify if D is
stabilized by a large set of controllers stabilizing the identified model
Gmoa = G(z, 5) This can be achieved by computing the worst case v-
gap 0w c(Gmod, Der) between the identified model G,,,q and the plants
in the set D,;. For this purpose, we first compute the worst case chordal
distances k1 c(Gmod(€7¥), D) at each frequency using the LMI tools
developed in Section 3.3. The worst case chordal distances are repre-
sented in Figure 6.2 where they are compared with the actual chordal
distances k(G moq(e?®), Go(e?*)) between the identified model G,,,q and
the true system Gj.

According to Lemma 3.1, since G,,0q is the center of D, we can
derive the worst case v-gap dwc(Gmod, Der) from the worst chordal dis-
tances as follows:

6WC’(Gmod, Dcl) = muEJiX ch(Gmod(ejw), Dcl) = (.1085.

'In practice, G is unknown.
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Figure 6.2: Kwc (Gmod (ejw)’ Dcl) (SOhd) and H(Gmod (ejw)’ GO (ejw))
(dashdot) at each frequency

The optimal stability margin byy:(Gmeq) can also be computed using (3.6)
and is here equal to 0.4650. We may therefore conclude that the set
C(Gmod, Det) of Gpog-based controllers that are guaranteed by the v-
gap theory to robustly stabilize D, is relatively large. We are therefore
incited to keep the pair {G,04 Do} in order to make the design of the
controller C' and to validate this controller for stability and for perfor-
mance.

6.1.4 Control design based on G,,,4

We will now use the identified model G,,,,4 in order to find a controller
C that satisfies the specifications presented at the end of Section 6.1.1
when C' is applied to G,,0q- For this purpose, we can e.g. use the
robust controller for flexible transmission systems obtained by Nordin
and Gutman using QFT design [67]:

0.0355 4+ 0.0181z~! y 18.8379 — 43.45382~! + 26.41262~2
1—21 1 +0.6489z~1 +(0.147822
0.5626 — 0.74922~ 1 + 0.32482 2 1.0461 + 0.56332 2

C(z) =

X
1—1.49982"1 + 0.637922 1 +0.4564z~1 +0.153022
1.3571 — 1.0741271 4+ 0.47022 2
1 —0.63082~" + 0.3840z2
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The controller C' has thus not really been designed from the identified
model G,,,q4, but this controller satisfies nevertheless all specifications
with the model G,04.

We will now verify whether this controller satisfies these specifica-
tions with all plants in D, (and therefore also with the true system Gy)?.
Let us begin by the validation of C for stability.

Figure 6.3: u(Mp,,(€’“)) at each frequency

6.1.5 Controller validation for stability

Following the procedure of Chapter 4, we build the dynamic vector
Mp,, (ej‘”) corresponding to the candidate controller C, and we com-
pute its stability radius at each frequency according to Theorem 4.2.
These stability radii are represented in Figure 6.3. The maximum value
of the stability radius is

max p(Mp,, (e’%)) = 0.2384
w

2Since we have chosen a controller C' that satisfies the specification of the bench-
mark [59], we know that the specifications will be satisfied with Go. However, this
fact does not imply that C' will satisfy these specifications with all plants in D.;, and
our objective in this illustration is not to design a robust controller from G4, but
to show that our methodology allows one to verify the specifications about the loop
[C' Go] using controller validation procedures based on the uncertainty set De;.
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Since this maximum value is smaller than one, we may conclude that
the controller C stabilizes all plants in the uncertainty set D.. Con-
sequently, we can also guarantee that the “to-be-validated” controller
C(z) stabilizes the true flexible transmission system Gy. The first re-
quirement presented at the end of Section 6.1.1 (i.e. the stability of the
achieved loop [C Gy)) is thus satisfied.

6.1.6 Controller validation for performance

The second requirement presented at the end of Section 6.1.1 was that
the designed controller should ensure a mazimum value of less than 6 dB
for the sensitivity function. The third requirement was that the step dis-
turbances p(t) should be removed within 1.2s. The third requirement is
thus a time-domain specification. In order to may verify this last spec-
ification within our frequency domain framework, let us translate the
time-domain specification into a frequency domain specification. Us-
ing the approximation of the second order system, we can assume that
the rejection time of a step disturbance is inversely proportional to the
cut-off frequency of the transfer function between the considered distur-
bance and the output of the system. In this case, this transfer function
Tpy(Go, C) is given by:

1 1 1
JE— X =
Ay 14+ GoC 1—|—(ZD—|-ZNC)50

where we have used the fact that Go = By/Ay = (Zndo)/(1 + Zpdo)
(see (6.8)). Since we know that the nominal transfer function T}y (Gmea, C)
satisfies the specification of a rejection time of 1.2s, the third require-
ment can be stated as follows: the cut-off frequency of Tpy(Go, C) must
be close to the cut-off frequency of Tpy(Gmod, C)-

pr(GOa C) =

Since the true system is unknown, we will verify whether the con-
troller C' achieves these requirements with all systems in D,;. For this
purpose, we choose two different worst case performance criteria. The
first one is the largest modulus of the sensitivity function 75y defined
in (5.3) i.e. tp_(w,Th2). This worst case performance criterion can be
computed using the LMI procedure presented in Theorem 5.1. The sec-
ond worst case performance criterion tp_, (w, Tpy) is the largest modulus
of the transfer function T),:

1
@ Toy) = | WX (20 (%) + 2 () C ()5
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This quantity can not be computed by the LMI procedure of Theo-
rem 5.1. However, it is easy to develop a similar LMI procedure in order
to compute tp_,(w,Tp,) exactly. Using these worst case performance
criteria, the controller C' is termed validated for performance if

e max, tp, (w,Tx) < 6 dB

e the minimal cut-off frequency of T},,(G(z, d), C) for a plant G(z,d)
in D that can be deduced from tp, (w, Tpy), is close to the cut-off
frequency of Tpy (Gmed, C)-

Let us now compute these criteria. Figure 6.4 presents tp_ (w, Th2),
and compares it with the nominal sensitivity |T52(Gmod, C)| and the
achieved sensitivity |T22(Go, C)|. Figure 6.5 does the same for the trans-
fer function T},. In Figure 6.4, we observe that

maxtpcl (w,TQQ) =5dB <6 dB.
w

In Figure 6.5, we observe that the minimal cut-off frequency of T}, (G(z, §),
C) for a plant G(z,d) in Dy is equal to 0.014 (tp,, (w,Tpy) = 0 dB in
w = 0.014) and that the cut-off frequency of T}y (G4, C) is equal to
0.0153. The minimal cut-off frequency is thus very close to the cut-off
frequency of Tpy(Gmod, C). The controller C' is thus validated for per-
formance. In other words, the controller C' satisfies both performance
specifications with all plants in D,;. As a consequence, the controller C
is also guaranteed to achieve these performance requirements with the
true flexible transmission system Gj.

With the controller validation procedures for stability and for per-
formance, we have thus been able to prove that the controller C' “de-
signed from G,,,q4”, achieves the specifications presented at the end of
Section 6.1.1 with the true system Gy. Our objective is thus reached.

6.1.7 Conclusions

Let us summarize what we have achieved in this section. Our objective
was to apply our methodology to the true flexible transmission system
Gy in order to verify that a controller ', satisfying a number of specifi-
cations with the identified model, satisfies also these specifications with
the unknown Gy. For this purpose, we have performed a validation ex-
periment on the true system yielding a model G,,,,q and an uncertainty
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10

Omega

Figure 6.4: tDcl (w,TQQ) (SOlid), |T22(G0, C)| (dashed), |T22(Gmoda C)|
(dashdot) at each frequency

region D, containing the true system (with a probability of 95%). The
relatively small worst case v-gap between the model and the plants in
D, has incited us to keep the pair {Gp,0q D¢} in order to design a
controller and to validate this controller for stability and performance.
Then, a robust controller C' that satisfies the performance specifications
with the model G,,,4, has been chosen. Using our controller validation
procedures, we have been able to prove that the chosen controller C' also
achieves the desired level of performance with all plants in the uncer-
tainty set D.. As a consequence, the controller C' can be applied to the
true flexible transmission system since we are assured that the achieved
performance will be satisfactory (modulo the probability level of 95%
for the presence of G in D).

6.2 Ferrosilicon production process

The first illustration was representative of a mechanical engineering con-
trol problem, in which there was no stochastic noise, and where the con-
trol objective was one of tracking and rejection of step disturbances. In
order to illustrate the generality of our validation theory, we now present
an application that is representative of industrial process control appli-
cations, in which the control objective is one of rejection of stochastic
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Figure 6.5: tp,,(w,Tpy) (solid), |Tpy(Go,C)| (dashed), |Tpy(Gmod,C)|
(dashdot) at each frequency

disturbances. In this second illustration, we will assume that the model
G moq for control design has been given a-priori.

6.2.1 Problem setting

The plant model and the controllers used in this simulation example are
taken from a paper by Ingason and Jonsson [54]. Ferrosilicon is a two-
phase mixture of the chemical compound FeSi, and the element silicon.
The balance between silicon and iron is regulated around 76% of the
total weight in silicon, 22% in iron and 2% in aluminium by adjusting
the input of raw materials to the furnace. Those are charged batchwize
to the top of the furnace, each batch consisting of a fixed amount of
quartz (SiO2) and a variable quantity of coal/coke (C) and iron oxyde
(Fe203). The quantity of coal/coke which is burned in the furnace does
not influence the silicon ratio in the mixture, hence the control input is
the amount of iron oxyde.

The authors of [54] have obtained the following ARX model for the
process:
y(t) +ay(t — 1) = bu(t — 1) + d + e(?) (6.9)

where the sampling period is one day, y(t) is the percentage of silicon
in the mixture that must be regulated around 76%, u(t) is the quantity
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of iron oxyde in the raw materials (expressed in kilogrammes), d is a
constant and e(t) is a stochastic disturbance. The nominal values of the
parameters and their standard deviations are:

a=—0.44, b= -0.0028, d=46.1,
o, =0.07, o0, =0.001, o4=05.6.

Here, for the sake of illustrating our theory, we make the assumption
that the true system is

(6.10)

boz ! —0.00322"1
G pr— pr—
o(z) = 17 a0zt 1—034z 1
1 1
HU(Z) = dg = 44.

T ltaz !l 1-034z 1
The nominal model chosen for control design is the one obtained by
Ingason and Jonsson [54]:

bzl —0.00282""
Gmod(2) = T 7 = T 04251
1 1
Hinod(2) = d = 46.1,

T 1+4az ! 1-04dz U
This model G,,,q was used by the authors of [54] to compute a GPC
controller. The control law that minimizes the cost function

2

2
Ju=E |yt +4) —r(t+5))* + Y AMAu(t+j 1))
j=1 j=1

where A(z) = 1 — 2z~ !, is given by

wt)=[1 0] (H"H+F'AF) " (HT (w(t) —v(t)) — FTAg(t))
(6.11)
where
b0
B =1 _u b]’
[ 1 0
o= -1 1]’
B —ay(t) +d
v(t) = _a@(t?—ad—i—d]’

w(ty = [rt) ()],
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A is a tuning parameter. The resulting controller is a controller Cy(z)
made up of three parts:

r(t) r(t)
u(t) =Ci(z) | —y®) | =(Cix) Cl(2) CK(2) )| —w(®)

1 1
(6.12)
where

() = b® 4 2b)\ — ab)

AT (Y 4 302X 4 a2D2X + A2 — 2ab2X) — (B2A+ A2)z— 1
V) = - ab® + abX — a?bX + a’bX

A (B 3B2A 4 b2 X + A2 — 2ab2)) — (B2 + A2)z 1

b? + bA + bA(1 — a)?

Ciz) = —

d
(b% + 362X + a2b2X + A2 — 2abZ\) — (A + A2)z |

The part Cf(z) is the part of the controller whose objective is to reject
the constant perturbation dy and the part C}(z) is the only part which
is important for stability analysis. The reference signal r(t) is generally
constant and given by r(t) = 76.

Objective. Our objective is to analyze the robustness properties of
the GPC controller C)(z) with A = 0.0007 in order to may apply this
controller to the true system Gg with confidence that is to say with the
assurance that the behaviour of the loop [C\—¢.0007 Go] will be satisfac-
tory with respect to the following requirements i.e.

e stability of the loop [C\—0.0007 Go]
e rejection of the stochastic noise v(t) = Hpe(t).
The controller C' achieves of course these specifications with the model

Gmod-

6.2.2 Validation experiments

Since the true system Gy is unknown, we need to perform a validation
experiment in order to design an uncertainty region containing the true
system. In fact, we will here perform two validation experiments: one
in open-loop and the other one using direct closed-loop identification.
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Open-loop validation experiment

The “true plant” model (Gg, Hy) was excited with u(t) chosen as a
PRBS with variance agol = 20, which is the maximum input variance
admissible for this process [54]. The noise e(t) was chosen as a Gaussian
white noise sequence with variance o2 = 0.078, which corresponds to
the noise acting on the real process as shown by experiments made by
the authors of [54]. The variance of the output was then o7 = 0.0884.
Recall that the validation experiment, i.e. the construction of an uncer-
tainty set D,;, consists of performing a PE identification using an un-
biased model structure. Therefore, 300 input-output data samples were
collected, corresponding approximately to one year of measurements.
These data were used to identify an ARX model with exact structure

Glo o) =2 Hpsy= L (6.13)
sy Ool) — 1 +51z_13 sy Ool) — 1 +51Z_1- -
We found
5 51 —0.3763 28131 x 1073 —1.2784 x 10°°
=1 s )= _ o B, =1 5 ENE
5o 0.0073 1.2784 x 10 1.4887 x 10

(6.14)
We then design the 95% uncertainty region D,; around G(z, d,;) follow-
ing the procedure of Section 2.2.2:

ZNG

Dy =1{G(2,6) | G(2,6) = 15 758

with § € Uy}

U = {6 € R | (6 — 001)T Py (6 — 001) < 5.99},
where
Zn(z)=(0 z') and Zp(z)=(z! 0).

The size x of the ellipsoid U, is here equal to 5.99 since Pr(x?(2) <
5.99) = 0.95. The obtained uncertainty region D,; contains as well the
in practice unknown true system G as the chosen model G,;,04-

Closed-loop validation experiment

The closed-loop validation was performed with a sub-optimal GPC con-
troller obtained by setting A = 0.001 in (6.12). We added a PRBS signal
to the constant reference r(f) = 76 such that we obtained agcl = 20.
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The variance of r(t) was then o2 = 0.014, the noise e(t) having the same
properties as in open-loop validation. With these settings, the output
variance was 0261 = 0.0880. Observe that the input variance is the same
as in open loop, and that the output variance is very close to that of
the open-loop experiment. Again, 300 input-output data samples were
collected and used to identify an ARX model with the same structure as
in open-loop validation (6.13), using a direct prediction error method.

We found

5o 51\ [ —0.3575 b 28323x10°  —8.7845 x 10 0
=\ 4, ) =\ —00067 ) 0T\ —8.7845x10°° 6.2416 x 106 )
(6.15)

We then design the 95% uncertainty region D,; around G(z, 501) follow-
ing the procedure for direct closed-loop identification of Section 2.2.4.1:

ZNO .
Da ={G(2,0) | G(2,0) = 1 with § € Ua}

Ua = {0 € R | (6 = 0a)" Py, (6 = bu1) < 5.99},

whith the same Zy and Zp as in D,;. As Dy, this uncertainty region D
contains as well the in practice unknown true system G as the model
Gmod-

6.2.3 Comparison of D, and D,

The worst case v-gap is now used to compare the two uncertainty sets
deduced from the two validation experiments. For this purpose, we
first compute the worst case chordal distances at each frequency for D,
and D, using the LMI tools developed in Section 3.3. According to
Lemma 3.1 and since G4 lies in both uncertainty sets, we can derive
the worst case Vinnicombe distances from the worst chordal distances
as follows:

0w c(Gmod, Dot) = max e (Gmoa(¢'), Dot) = 0.0225

0w c(Gmod; Det) = max siw ¢ (Gmoa (™), Det) = 0.0156

Since the optimal stability margin byt (Gmoeq) is equal to 0.99, the sets
C(Gmod, Dor) and C(Gpod, Der) of controllers stabilizing Gy,0q that are
guaranteed to robustly stabilize D,; and D,;, respectively, are relatively
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large. Indeed, the worst case v-gaps dwc(Gmod, Dot) and dw e (Gmod, Det)
are very small with respect to bopi(Grmoq). Consequently, both uncer-
tainty sets are relatively well tuned for robustly stable controller design
based on G,,,,q. We therefore decide to keep and to apply the controller
validation procedures to both uncertainty sets.

6.2.4 Controller validation for stability
Sufficient test

In this illustration, we also consider the sufficient robust stability con-
dition that can be deduced from the worst case v-gap in order to show
that this condition can be conservative with respect to the necessary
and sufficient condition developed in Chapter 4.

The controller C\—g goo7 achieves a very small stability margin meo 2CY_ ooon

with G4 €qual to 0.0169. The controller C\—¢ o007 lies thus in C(Ginod, Der)
but not in C(G 04, Do) since we have that

5WC (Gmoda Dol) > meod Cr—0.0007 — 0.0169 > 5WC (Gmod, Dcl)- (6.16)

Therefore, from this sufficient test, we can conclude that Cy—g. goo7 sta-
bilizes all plants in the set D.;. To make an undoubted statement about
the set D,;, we will need to use the necessary and sufficient test devel-
oped in Chapter 4.

Necessary and sufficient test

We first verify if C\—g.ggo7 stabilizes the centers of D,; and D,;. Since it
is the case, we build the dynamic vectors Mp,, (ej ‘”) and Mp_, (ej“’) cor-
responding to the candidate controller C'y_q gg07, and we compute their
stability radii according to Theorem 4.2. Their respective maximum
values are

max p (Mp,, (¢/¥)) = 0.6572 < 1, (6.17)
w
max p (Mp,, (/) = 02111 <1, (6.18)
w
Since these two values are smaller than one, Theorem 4.2 confirms that

Ch=0.0007 stabilizes all systems in the uncertainty set D,;, but also shows
that C'\—g.0007 also stabilizes all systems in D,;. Such quantitative result
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for a controller with a so small stability margin as C'y—¢.gpo7 confirms our
first qualitative observation that was that both uncertainty sets are well
tuned for robustly stable controller design based on Gy,,4 (and this even
though that qualitative observation is based on a sufficient condition
that would have invalidated the particular controller C\—¢.goo7 when D,
is considered (see (6.16))).

Beside these considerations, the main conclusion we can derive from
these stability tests is that the “to-be-validated” controller Cy—_g ggo7
is guaranteed to stabilize the true ferrosilicon production process Gj.
Therefore, the first of the requirements presented at the end of Sec-
tion 6.2.1 (i.e. the stability of the achieved loop [Cx—=¢.0007 Go]) is satis-
fied.

6.2.5 Controller validation for performance

The second requirement presented at the end of Section 6.2.1 was to
reject the noise v(t) = Hy(z)e(t), which is essentially located at low
frequencies (Hp(e/*) is a first order low-pass filter; see Figure 6.6). A
performance specification in the frequency domain is therefore that the
sensitivity function Tsa(Go, CY_ 0007(2)) = 1/(1 + GoC3_g 0007(2)) be
low at low frequencies in order to attenuate v(t). We thus define the
worst-case performance criterion as the largest modulus of the sensitivity
function Thy defined in (5.3) i.e. tp(w,Th2). This worst case performance
criterion can be computed using the LMI procedure presented in Theo-
rem 5.1. We will call the controller Cy—¢.g007(2) validated if tp(w, Th2)
is high-pass with max,, tp(w, Th2) reasonably small. The Bode diagrams
of the worst-case and achieved sensitivity functions are depicted in Fig-
ure 6.6.

Clearly, the controller is validated by the closed-loop validation ex-
periment yielding D.; but not by the open-loop experiment yielding D,,.

The main conclusion we can derive from this performance test is that
the controller Cy—ggpo7 Will sufficiently decrease the output variance
when it will be applied to Gy. We have indeed proved that, for one of
the two uncertainty sets containing Gy (i.e. D), the worst case modulus
of the sensitivity function is a high pass filter with a reasonably small
reasonance peak allowing rejection of the noise v(t).
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. . .
1077 10 10

normalized frequency [rad/s]

Figure 6.6: Open-loop and closed-loop controller validation for perfor-
mance: tp,,(w,Th2) (—), tp,(w,Te2) (—), |T22(Go, Crx=0.0007)| (—),
| T22(Gmods Cr=0.0007)| (---) and [Hol (-)

Remark. Even if D, is a “good” uncertainty region with respect to
robustly stable controller design with G,,,0q (i-e. it has a large set of sta-
bilizing controllers), it appears that the worst case performance achieved
by Cxr—o.0007 With the plants in D,; is really bad. This is a consequence of
the fact that the worst case v-gap is only an indicator of robust stability
and not an indicator of robust performance.

6.2.6 Conclusions

Let us summarize what we have achieved in this second illustration. We
have applied our methodology to the case of a chemical process where
the control objective is the rejection of stochastic disturbances. We
have chosen a model G,,,q for the true ferrosilicon production process
Go. From the model G,,,4, a GPC controller has been designed. We
have performed validation experiments on the true system leading to
two uncertainty sets containing the true system (with a probability of
95%). The results of Chapter 3 have then shown that both uncertainty
sets have a large robustly stabilizing controller set. After that, using
our controller validation procedures, we have been able to prove that
the considered controller stabilizes and achieves sufficient performance
with all plants in one of the uncertainty set. As a consequence, the
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controller can be applied to the true system since we are assured that
the achieved performance will be satisfactory (modulo the probability
level of 95% for the presence of Gy in the uncertainty set).
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Chapter 7

Frequency domain image of
a set of linearly
parametrized transfer
functions

In the previous chapters, we have analyzed the set D of parametrized
transfer functions containing the true system at a certain probability
level and we have given some robustness tools for such a set. In this
chapter, we will do something rather different : we will analyze the im-
age of such a set in the Nyquist plane. The description of the image of
D in its general structure is quite complicated. Therefore, we will limit
us to uncertainty sets D where the plants are linearly parametrized. It
is to be noted that such structure will be used in the next chapter in
order to extend our result to the case of biased model structures.

For model structures that are linear in the parameter vector 6, we
show that the image in the Nyquist plane of a parametric confidence re-
gion D defined by an ellipsoid Uy in the parameter space is a frequency
domain confidence region £ made up of ellipses U(w) at each frequency
in the Nyquist plane. The properties of the inverse image of this fre-
quency domain confidence region in parameter space are also analyzed.
We establish that the inverse image Cy(U (w)) of each ellipse U (w) in the
parameter space is a much larger volume than the initial ellipsoid Uy,
since the mapping between the parametric and frequency domains is not
bijective. We also show that this inverse image Cy(U(w)) is different at

93
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each frequency. Consequently, the inverse image of the whole frequency
domain confidence region L is the intersection of these different volumes
Cy(U(w)) over the whole frequency range. We show by an example
that this intersection may be a strict subset of the initial ellipsoid Uy
in parameter space. The confidence region £ in the Nyquist plane is
thus generally the image of more parameter vectors 6 than those in Uy.
Consequently, the probability level linked to the confidence region L is
larger than the probability level linked to the confidence region Uy in
parameter space.

Our definition of the image of the parametric confidence region D in
the Nyquist plane is very close to the concept of value set of a family
of parametrized polynomials (see e.g. [4] and references therein). These
value sets have been analyzed for a large amount of constraints on the
parameters (e.g. polytope, sphere, ...). The general use of these value
sets is to verify whether a family of polynomials is different from zero
at each frequency and is therefore stable. The results presented in this
chapter are nevertheless broader than those in [4]. Indeed, our results
determine not only the image £ of D in the Nyquist plane, but also de-
termine the inverse image of £ in the parameter space. Moreover, since
we consider here a probabilistic framework as opposed to the determin-
istic framework in [4], our results give in addition the probability level
linked to the image L of the confidence region D in the Nyquist plane.

Chapter outline. In Section 7.1, we present, in a very general way,
the linearly parametrized systems we will consider and we define a set D
that contains the linearly parametrized systems whose parameter vector
is constrained to lie in an ellipsoid. We show in Section 7.2 that this
general problem applies to the case of uncertainty sets deduced from
prediction error identification. In Section 7.3, we present two theorems
that describe the image of an ellipsoid by a nonbijective mapping, as well
as the inverse image defined by such mapping. In Section 7.4, we present
the frequency domain set £, image of the set D in the Nyquist plane. In
Section 7.5, we analyze the inverse image of the set £. In Section 7.6,
we define the probability level linked to £ and give the value of this
probability level. In the last sections, we give some comments about
the case of model structures that are not linearly parametrized and we
finish by an illustration and some conclusions.
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7.1 Problem statement

As stated in the introduction, we consider linearly parametrized transfer
functions. The case of nonlinearly parametrized transfer functions will
be briefly discussed in Section 7.8. Let us thus consider the following
system description:

G(z,0) = G(2) + A(2)0 (7.1)

with @ € RF*! the parameter vector, G(z) a known transfer function and
A(z) a known row vector of transfer functions. Let us further assume
that @ has a Gaussian probability density function with zero mean and
covariance Py € R¥*F je.

0 ~ N(0, Py) (7.2)

We have therefore:

0P, 0 ~ x*(k) (7.3)

where x?(k) is the chi-square probability density function with k degrees
of freedom.

Let us now write the frequency response g(e’“,6) of G(z,0) at the
frequency w in the following form:

i Re(G(e7¥,0
oo 2 (G )

Im
9(ei*) T(c?)
_ [ Re(G(e)) ), [ Re(A(e))
= (e ) * (T )0 0

The frequency response vector g(e/“,6) has thus a Gaussian proba-
bility density function with mean g(e/*) and covariance Py(w) =
cov((g(e?,0)—g(e/))(g(e’*,0)—g(e/*))") = T(e?) PyT ()" € R**2.
We have thus

| 9(e7°,0) ~ N(3(e7%), Py(w))
(9(e7%,0) — 3(e7))T Py (w) = (9(e7%, 0) — 5(e7)) ~ x*(2)

The results presented in (7.5) are very common and can e.g. be found
in [47]. However, these results do not give a response to some important

(7.5)
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questions. If we design a confidence ellipsoid in the parameter space
using (7.3), is the image of such confidence ellipsoid in the Nyquist
plane a confidence region with the same probability level? How can
we relate this image with the known probability density function of
the frequency response (7.5)7 If we design a confidence ellipse at each
frequency using (7.5) and define a set by connecting all these ellipses,
what is the inverse image of that set in parameter space? In order
to answer these questions, we will consider throughout this paper the
following confidence ellipsoid in parameter space and the corresponding
region in transfer function space. We will choose a probability level of
0.95 for these confidence regions.

Definition 7.1 Let us consider the parametrized model structure given
in (7.1) and the probability density function of the parameter vector 6
given in (7.2). The ellipsoid Uy of size x:

Up=1{0]60"P,'0 < x}, (7.6)

with x such that Pr(x?(k) < x) = 0.95, is a confidence ellipsoid of
probability 0.95 in the parameter space. We define the set D of transfer
functions that correspond to the parameters 0 € Uy:

D ={G(z,0) | 6 € Uy} (7.7)

The probability level a(D) linked to D is thus given by a(D) = Pr(G(z,0) €
D) = 0.95.

In the next sections, we describe the image in the Nyquist plane of
the uncertainty region D and we analyze the properties of such image,
as well as its inverse image, with respect to the probability level. But
beforehand, we relate the general problem presented in this section to
the particular case of the uncertainty sets that can be derived from PE
identification.

7.2 Link with the uncertainty set deduced from
PE identification

For this purpose, let us consider the following linearly parametrized
model structure.

M = {G(2,8) | G(z,0) = Z(2)8)}, (7.8)
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where § € R¥*! is the parameter vector and Z(z) is a transfer vector
containing known transfer functions (such as Laguerre or Legendre ba-
sis functions). According to Proposition 2.2, if the true system can be
described as a plant G(z,0p) in M, then a PE identification procedure
with the model structure M and N input-output data delivers an un-
biased estimate & of the true parameter vector and an estimate Ps of
the covariance matrix C of §. The estimate § can be considered as the
realization of a Gaussian distribution with mean §; and covariance C.
In order to design confidence ellipsoids containing the true system at a
certain probability level, we can then consider the following distribution:

(6= 8)" Py (0= 0) ~X*(K) (7.9)

Using the last expression and the procedure described in Chapter 2, we
can design an uncertainty set D,; containing the true system G(z, dp)
at a certain probability level, say 95 %. This uncertainty set Dp; has
the following structure:

Dpei = {G(2,0) | G(2,0) = Z(2)d with § € Upei} (7.10)

Upei = {6 | (6 = 8)" Py (6 —0) < x}, (7.11)

where x is such that Pr(x?(k) < x) = 0.95. The uncertainty set Dpe;
can be rewritten in the formalism of Section 7.1. Indeed, let us denote

9 26-5, G2 Z(z) and Py 2 P5. Then, (7.10) and (7.11) are,
respectively, equivalent with:

Dpei = {G(2,0) | G(2,0) = G(2) + Z(2)0 with 0 € Upe;}

Upei = {0 | 67 P10 < x},

By comparing these last expressions with (7.7) and (7.6), we see that
the problem of finding the image in the Nyquist plane of the uncertainty
set Dpe; deduced from PE identification and containing the true system
with probability 95 %, in the case where that true system is linearly
parametrized, can be solved by solving the general problem presented
in the previous section.

7.3 Linear algebra preliminaries

The general problem presented in Section 7.1 consists of finding (and of
analysing) the image in the Nyquist plane of the set of plants D defined
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in (7.7). We first present two theorems that describe properties of a
mapping T between a real vector y and another real vector x of lower
dimension. This mapping has the following expression

r="Ty (7.12)

where y € R¥*!, z € R™! (n < k) are real vectors, and T € R™*¥ is a
real matrix of rank n.

Let us first recall a well-known lemma, that will be useful to prove
the first theorem.

Lemma 7.1 Let us consider the partitioned symmetric positive definite
matriz P € RF*k;
Py P
(3 %)
Pry Pa

with Pjy € R™™, Py € R gnd Pyy € RE—XE=1) " Let us also
consider two real vectors z € R"*' and z € R¥™*! and an ellipsoid
U,z defined as:

Then the set U,

02 e) () et (7.13)
s also an ellipsoid given by

Uy ={z | TP 'z < 1} (7.14)
Proof. see Appendix A.1. O

Note that U, is not the intersection of U,z with the subspace z = 0; it
is a larger set. Let us now present our two theorems about the mapping
T defined in (7.12).

Theorem 7.1 Let us consider the mapping T defined in (7.12) and the
ellipsoid Uy of size x in the y-space:

Uy={y | y"P, 'y < x}, (7.15)
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with Py € Rk o positive definite matriz. The image U, of Uy by the
mapping T i.e. Uy 2 {z | ¢ = Ty with y € Uy} is an ellipsoid in the

xr-space given by
Uy ={z |[z" P 'z < x}, (7.16)

with P, = TP,T" € R"™.

Proof. Let us first complete the mapping T" by generating a nonsingular
mapping 1"

T
—

x T
- o
such that T € R*** has rank k. Using T, we have that
P71

T —r—
yTPrly < x <= ( ; ) TP T ( ; ) <y (7.18)

Proving Theorem 7.1 is thus equivalent to proving that (7.16) is the
domain where z is constrained to lie when (7.18) holds. This follows
immediately from Lemma 7.1, noting that if P = nyfT, then P, =
Py =TP,T". O

Theorem 7.2 Let us consider the mapping T' and the ellipsoids U, and
Uy defined in (7.12), (7.15) and (7.16), respectively. Define the inverse
image Cy of Uy using the mapping T as

A
Cy={y|z=TyeU,}, (7.19)
Then Cy is a volume given by

Cy={y | y"Rey < x}, (7.20)

with Rc = TTP7'T, a singular matriz € R"*k . Moreover, the volume
Cy has the following properties:

e The matriz Rc defining Cy has rank n i.e. it has k —n zero
eigenvalues. The volume Cy has therefore k — n infinite main
azes. The directions y; (i = 1...k —n) of these infinite main azes
are the eigenvectors corresponding to the null eigenvalues of Re¢.
Moreover, these eigenvectors y; belong to the null space of T i.e.
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e The ellipsoid Uy is included in C,.

Proof. See Appendix A.2. O

Comments.

e Since the matrix 7" has rank n < k, the mapping (7.12) is not
bijective. This explains the fact that the image of U, by the map-
ping (7.12) is exactly U, and that the inverse image of U, is a
larger volume C), containing U,,.

e In the particular case where k£ = 3 and n = 2, U, is then an ellipse
(Theorem 7.1) and C, is a cylinder with infinite axis. The axis of
the cylinder is in the direction of the eigenvector corresponding to
the single null eigenvalue (Theorem 7.2).

7.4 Image of D in the Nyquist plane

Theorem 7.1 tells us that the image of an ellipsoid by a linear mapping
into a smaller dimensional space is also an ellipsoid. This theorem will
now be used in order to find the frequency domain region (or dynamic
region) that is the image of D in the Nyquist plane. This frequency
domain region is defined via a constraint on the frequency response of
the plants in this region at every frequency. The general expression of a
frequency domain region can e.g. be written as follows:

L={G(2) | g(e’) € U(w) Yw}, (7.21)

where g(e/*) = ( Re(G(e’*)) Im(G(e'¥)) )T and U(w) is the particu-
lar domain where the frequency response vector of the plants G(z) € £
is constrained to lie at the frequency w.

We are thus looking for the frequency domain region £ that corre-
sponds to the image of the set D in the Nyquist plane. Let us first define
this notion properly.

Definition 7.2 (image of D in the Nyquist plane) Consider the set
D of transfer functions defined in (7.7) and the general expression of a
frequency domain region L given in (7.21). The image of D in the
Nyquist plane is the frequency domain region L defined by (7.21) with
U(w) defined as follows, at each frequency w:



Frequency domain image of a set of linearly parametrized... 101

Uw) = {g(e/) | g(e’) = g(e’“,0) for some 0 € Uy} (7.22)
with g(e?*,0) defined in (7.4).
Important comments. Definition 7.2 tells us

e that the image £ of D in the Nyquist plane is a set containing the
image of all plants in D;

e that all “points g(e/¥) € U(w)” at a frequency w are the image of
some plant in D.

However, if we randomly select frequency functions f(e/*) € L, for
w € [0 w], then most of such functions will not be in D, ie. for
most of such functions f(e/¥) € L, there will not exist a 6 such that
f(e7%) = g(e/*,0) Yw with g(e’*, ) defined by (7.4).

Using the mapping (7.4) between the space of parametrized transfer
functions G(z,0) (or parameter space) and the frequency domain space,
and the results of Theorem 7.1, we can construct an explicit expression
of the image £ of D in the Nyquist plane.

Theorem 7.3 Consider the set D of transfer functions G(z,0) = G(z)+
A(2)0 presented in Definition 7.1, and the mapping (7.4) between pa-
rameter space and frequency domain space. The image of D in the
Nyquist plane (see Definition 7.2) is a frequency domain region L having
the following expression.

L={G(2)] g(e/¥) € U(w) Yw} (7.23)
Uw) = {g e R*" | (g = g(¢™)"P(w) "(g — g(e/*)) <x} (7.24)
with P(w) = T(e/¥)PyT(e7¥)T,
wy _ [ Re(G(e?)) _juy _ ( RelG(e))
o) = (el ) ana g = (el )

The image L of D in the Nyquist plane is thus made up of ellipses U(w)
at each frequency around the frequency response of the known transfer
function G(z). The ellipse U(w) at a particular frequency can therefore
be considered as the image of D in the Nyquist plane at this frequency.
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Proof. In order to establish the proof of Theorem 7.3, we need to prove
that the expression (7.24) of U(w) is equivalent with (7.22). The result
follows directly from Theorem 7.1 by considering the mapping (7.4) (i.e.
g(e7*,0) — g(e¥) = T(e’*)0) at a particular frequency w. O

Remarks. Tt is to be noted that the matrix P(w) defining U(w) is equal
to the covariance matrix Py(w) of g(e/*,0) (see (7.5)). It is also to be
noted that, at the frequencies w = 0 and w = =, the ellipse U(w) degen-
erates into a line segment. The matrix P(w) is no longer nonsingular.
However, because Im(G(e/“)) = 0 at w = 0 and w = 7, one only need
the first entry of P(w) to be nonzero.

7.5 Inverse image of L

In the previous section, we have determined the frequency domain re-
gion L, image of the set D of parametrized transfer functions G(z,8).
This set £, made up of ellipses U(w) at each frequency, is defined by the
property (7.22). In particular, £ contains all plants in D. The set L is
nevertheless not equivalent to D. Indeed, we prove that there are more
plants in £ than those in D. These additional plants obviously include
plants having a structure different from G(z,6) (i.e. they cannot be de-
scribed as G(z,0) for any 6 (see (7.1))), but surprisingly, also include
plants having the structure G(z,6) but for 6 & Uy.

In this chapter, we will focus on the additional plants in £ having
the structure G(z,6) given in (7.1) but for § & Uy. The fact that such
additional plants exist in £ is a consequence of the fact that the map-
ping (7.4) is not bijective! since (7.4) maps a k-dimensional space into
the 2-dimensional frequency domain space. In order to establish that
additional plants G(z,0) lie in £, the inverse image of £ in the space of
parametrized transfer functions G(z,0) has to be determined. For this
purpose, it is useful to first analyze the inverse image D(U(w)), via the
mapping (7.4), of one ellipse U(w) of L in the space of parametrized
transfer functions G(z, 6).

Proposition 7.1 Consider a particular frequency w and the ellipse U(w)
defined in (7.24) which is the image of the set D in the Nyquist plane at

'The mapping T'(e’*) is only bijective if the size k of the vector 8 is equal to two.
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the frequency w. Using the mapping (7.4) from 0 to g(e’*, ), define the
inverse image of U(w) in the parameter space as

CoU(w)) = {0 | 9(7*,0) € U(w)}. (7.25)

Correspondingly, define the inverse image of U(w) in the space of
parametrized transfer functions G(z,0) as

D(U(w)) = {G(2,0) | g(e?,0) € U(w)}. (7.26)

Then the set Cy(U(w)) is a volume in the 0-space with k—2 infinite azes
defined as:

Co(U(w)) = {0 € R | gTT ()T P(w) 1T ()0 < x}.  (7.27)

Moreover, Uy C Cy(U(w)) and D C D(U(w)).

Proof. The expression (7.27) of Cp(U(w)) follows directly from The-
orem 7.2 by substituting U(w) for Uy, Uy for Uy and Cy(U(w)) for C,.
It then follows from the last part of Theorem 7.2 that Uy is a subset
of Cy(U(w)). Now observe from (7.25) and (7.26) that D(U(w)) can
equivalently be described as

D(U(w)) = {G(2,0) | 0 € Cy(U(w))} (7.28)

It then follows from Uy C Cy(U(w)) and the definitions (7.7) and (7.28)
that D C D(U (w)). O

Proposition 7.1 tells us that the ellipse U(w) is the image of more
plants G(z,6) than those in D. These additional plants G(z,0oy:) with
Oout € Cp(U(w)) \ Up, have the property that 3 6;, € Uy such that, at
frequency w,

g(e]w, gout) = g(ejwv Qm),

since U(w) is defined by (7.22).

It is also important to note that the inverse image D(U(w)) of U(w)
in the space of parametrized transfer functions G(z,0) is different at
each frequency, because the inverse image Cy(U(w)) in parameter space
is different at each frequency. In other words, U(w) is the image of a set
D(U(w)) of plants G(z,6) that are different at each frequency.
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In Proposition 7.1, we have computed the inverse image Cy(U(w))
in parameter space of one ellipse U(w), via the inverse of mapping (7.4).
We now determine the inverse image Up(L) in parameter space of the
whole set £ defined by (7.23) and (7.24).

Theorem 7.4 Consider the frequency domain set L defined by (7.23)
and (7.24). Define the inverse image Ug(L) of L in parameter space,
via the mapping (7.4), as:

Us(L) = {8 | G(2,0) € L} (7.29)

Then
Up(L) = [ Co(U(w)), (7.30)

wel0 ]
where Cy(U(w)) is defined in (7.25) and (7.27). Moreover,

Up C Up(L). (7.31)

Proof. First observe that, by the definition of £ in (7.23), the set
Up(L) defined in (7.29) is equivalent with

Up(L) = {6 | g(7*,6) € U(w) Yuw}.

The result (7.30) then follows immediately from Definition (7.25). The
inclusion (7.31) then follows from the main result of Proposition 7.1,
namely Uy C Cy(U(w)) Vw. O

Corollary 7.1 Consider the frequency domain set L defined by (7.23)
and (7.24). Define the inverse image D(L) of L in the space of parametrized
transfer functions G(z,0), via the mapping (7.4), as

D(L) = {G(z,0) | G(z,0) € L}. (7.32)
Then D C D(L).
Proof. By (7.32) and (7.29), it follows that

D(L) = {G(2,0) | 6 € Uy(L)}. (7.33)

The result then follows from the result (7.31) of Theorem 7.4, and the
definition (7.7) of D. O
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Corollary 7.2 With definitions as above, we have:
Up CUY(L) C Cy(U(w)) Yw (7.34)
DCD(L) CDU(w)) Vw. (7.35)

Proof. The first inclusions follow from Theorem 7.4 and Corollary 7.1.
The second inclusion in (7.34) follows from (7.30), and the second inclu-
sion of (7.35) from (7.33), (7.28) and (7.34). O

Theorem 7.4 tells that the ellipsoid Uy which defines D is a subset
of Up(L) = Nuep n Co(U(w)). We shall illustrate by an example in
Section 8 that it may be a strictly proper subset of Up(L). As a conse-
quence, D may be a strictly proper subset of D(L), and the frequency
domain region L is therefore the image in the Nyquist plane of a set D(L)
containing more plants G(z,0) than those in D. It is to be noted that,
according to the definition of £ (Definition 7.2), these additional plants
G(z,0put) With O, € Up(L) \ Up, must have the property that, at each
frequency w, there exists 6;, in Uy such that G(e/, 0,u¢) = G(e7,0;y,).
Note that it is not possible to have a single value of 6;,, which applies at
all frequencies.

7.6 Probability level linked to the confidence
region [

In the previous sections, we have shown that the image of a set D in the
Nyquist plane is a frequency domain region £ made up of ellipses U(w)
at each frequency. We have also shown that the sets U(w) and the whole
region £ are (or may be) the image of more plants G(z, ) than those in
D. Let us now consider both sets (i.e. U(w) and L) as confidence regions.
The ellipse U(w) is a confidence region for the frequency response vector
g(e?%, 0) of the plants G(z,0) and the set £ is a confidence region for the
plants G(z,0). Since the parameter vector € has a probability density
function (see (7.2)), we can relate a probability level to both confidence
regions.

Definition 7.3 Consider the parametrized transfer functions G(z,0)
given in (7.1), whose parameter vector 6 has the probability density func-

tion (7.2). Consider also the sets U(w) and L defined in (7.23)-(7.24).
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The probability level a(U(w)) linked to U(w) is defined as :
a(U(w)) = Pr(g(¢,0) € Uw)),

where (eI, 0) is defined in (7.4). The probability level (L) linked to
L is defined as:
a(L) = Pr(G(z,0) € L).

These probability levels a(U(w)) and a(L) will be larger than the
probability level a(D) linked to D (i.e. a(D) = 0.95) since D C D(L) C
D(U(w)) Yw (see Corollary 7.2). Theorem 7.5 gives an exact computa-
tion of (U (w)), as well as upper and lower bounds for «(L).

Theorem 7.5 Consider the parametrized transfer functions G(z,0) given
in (7.1), whose parameter vector 0 has the probability density func-
tion (7.2). Consider also the sets U(w) and L defined in (7.23)-(7.24).
Then the probability level a(U(w)) linked to U(w) (see Definition 7.3) is

given by:

a(U(w)) = Pr(G(z0) € D(U(w))) (7.36)
= Pr(x*(2) < x) Vw, (7.37)

where D(U(w)) is defined in (7.26). The probability level (L) linked to
L (see Definition 7.3) is bounded by:

a(D) < a(L) < a(U(w)) (7.38)

where a(D) is the probability level linked to the set D presented in Def-
inition 7.1 and of which the set L is the image in the Nyquist plane
(a(D) = 0.95).

Proof. That a(U(w)) is equal to Pr(G(z,0) € D(U(w))) follows from
Proposition 7.1. That «(U(w)) is also equal to (7.37) is a direct con-
sequence of the probability density function of g(e/*,#) given in (7.5)
since the covariance matrix Py (w) of g(e, 0) is equal to the matrix P(w)
defining the ellipse U (w).

Since the inverse image of £ in the space of parametrized transfer
functions G(z,0) is D(L), we can write the following about the proba-
bility level a(L) linked to L:

a(L) = Pr(G(z,0) € D(L)).
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The upper bound in (7.38) proceeds then from the fact that D(L) C
D(U(w)) Yw and the lower bound from the fact that D C D(L) (see
Theorem 7.4). O

Important comments. Theorem 7.5 shows that the probability level
a(L) linked to the image of D in the Nyquist plane is larger than the
probability level linked to D (i.e. a(D) = 0.95). This is a consequence
of the fact that £ is the image of more plants than those in D because
of the singularity of the mapping (7.4).

It is also interesting to note that if we consider the ellipses U (w) fre-
quency by frequency, these ellipses are the image in the Nyquist plane
of a set D(U(w)), different at each frequency, and having a probability
level a(U(w)) which follows from the probability density function (7.5)
of g(e’*,0). However, since the sets D(U(w)) are different at each fre-
quency, when we collect together all ellipses U(w) to make up L, the
probability level a(L) is smaller than «(U(w)). This last remark shows
that the probablility density function of g(e’, ) given in (7.5) is only
relevant for one particular frequency. Theorem 7.5 shows therefore that,
in order to design a confidence region £ with a probability level «(L)
larger than 95%, one has to first design a confidence region D having
the desired probability level (i.e. (D) = 0.95) and then take its image
L in the Nyquist plane.

Remarks. The plants having another structure than G(z,6) and that
lie in £ do not modify the probability level (L) since only the parameter
vector 6 has a probability density function.

7.7 Summary and consequences for the uncer-
tainty region deduced from PE identifica-
tion

In the previous section, we have considered the set D of linearly parametrized
transfer functions G(z,0) that is constructed from a 95% confidence el-
lipsoid Uy in parameter space. We have shown that the image L of this
set D is a frequency domain region £ made up of ellipses at each fre-
quency. We have also shown that the inverse image of £ in the space of
parametrized transfer functions G(z,0) is a set D(L) larger than the set
D because of the singularity of the mapping between parameter space
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and frequency domain space. If we consider the set £ as a confidence re-
gion for the plants G(z,0), the probability level a(L) linked to £ is thus
larger than the probability level a(D) linked to D (i.e. a(D) = 0.95).

These results can apply to the case of the uncertainty region Dp,;
containing the (linearly parametrized) true system G at a probability
level of 0.95. This set has been introduced in Section 7.2. Indeed, the
set Dpe; has the same structure as the set D presented in Definition 7.1.
Therefore, we can construct the image Ly.; of D)e; in the Nyquist plane
using Theorem 7.3. If we consider then the set L,.; as an uncertainty
region for the true system Gy, Theorem 7.5 shows that the probability
level of the presence of the true system G in the frequency domain
uncertainty region L,,; is larger than 0.95.

7.8 Case of not linearly parametrized model struc-
tures

Until now, we have treated the case of systems G(z,6) that can be
written as in (7.1) and whose parameters have the probability density
function (7.2). We have shown for this type of model structure the link
between a set D of transfer functions G(z,6) and its image £ in the
Nyquist plane. If the model structure is not linearly parametrized as
in (7.1), our conclusions do not hold i.e. the image at a frequency w is
not guaranteed to be an ellipse. In [62, 43, 10], a first order approxi-
mation was used to map the parametric confidence ellipsoid into ellipses
in the Nyquist plane. However, using such an approach, no probablity
level can be guaranteed for the obtained frequency domain region.

As a consequence, it is very difficult to have a clear idea of the image
in the Nyquist plane of a set Dy, of rational transfer functions with
parameters appearing in both numerator and denominator like the set
defined in (2.44). Some partial results have been presented in [20, 40].
In [20], the authors have presented a way to compute, at each frequency,
the largest and the smallest modulus and phase of the plants in a region
Dyen- In [40], we have given an LMI procedure that computes at each
frequency the smallest overbounding ellipse that contains the frequency
response of the plants in such set Dgyep,.
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7.9 Simulation example

In order to illustrate the results of this chapter, we present the following
example. Let us consider the following system description:

0.082~1 +0.10092~2 + 0.0359~ 3 012 L+ 0322 + 0523

G(z.0) =
(2,0) 1 — 1557821 1 0576922 1— 1.55782—1 + 0.57692—2
/]
A(z) ——
- T - ~ [ 6
_ ~ —1 -2 -3 0
G2+ T 15578517 057695 2 (271 =7 =) 92

where the parameter vector # is assumed to have a Gaussian probability
density function with zero mean and covariance Py given by:

1.0031 0.0263 —0.0111
Py=1073 x 0.0263 1.0039 0.0268
—0.0111 0.0268 1.0039

We consider the 95 % confidence ellipsoid Uy in the parameter space
that defines a corresponding region D in the space of transfer function:

Up=1{0]6"P;'0 < 7.81},

D ={G(20) | 0 € Uy}

Using Theorem 7.3, we can design the image £ of D in the Nyquist
plane. This image £ is made up of ellipses at each frequency around the
frequency response of G(z) and is represented in Figure 7.1. According
to Theorem 7.3, the expression of the ellipse U(w) at the frequency w is
given by:

Uw) ={g € R*" | (9 - 3(e™)" P(w) ' (g — g(e')) < 7.81}
with P(w) = T(e’*)PyT (e’*)T and

o gwy _ [ RelG(e7)) wy _ [ Re(A(e))
g(e’?) = < Im(C_r'(ejw)) )a T(e’) = < Im(A(ej‘”)) ) .

All plants in D lie in £, and £ has the property (7.22). However, the
mappings between D and £ and between D and U(w) are not bijective



110 Frequency domain image of a set of linearly parametrized...

180

210 TV h 330

240 3000 T T T

270

Figure 7.1: Frequency domain representation of D in the Nyquist plane
with ellipses U (w) at some frequencies, frequency response of G(z) (dash-
dot), frequency response of G(z,0,,;) (dashed) and frequency response
of G(z,0ys) (solid)

as shown in Theorem 7.4 and Proposition 7.1, respectively. In order
to illustrate the results presented in these theorems, we will show two
things:

1. there exist plants G(z,60,) outside D whose frequency response
vector g(e??, 0,y¢) lies in some ellipses U(w) but not in all of them;

2. there exist plants G(z, 0y;5) outside D that lie in the whole region
L.

Since the size of § is 3, we know that the vectors # that are projected
into U(w) at the frequency w are those lying in the cylinder Cy(U(w))
whose axis direction is given by the normed eigenvector 6,,,;(w) corre-
sponding to the null eigenvalue of the mapping T'(e/“) (see Theorem 7.2
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and Proposition 7.1). Using this property, we can find a plant G(z, Oyu)
such that 6,,; € Uy, but such that its frequency response g(e/“?, 6,,;) at
wp lies in U(wyp) for a particular frequency wy, say wy = 0.25. Indeed,
let us choose as vector 0,,; a vector in the same direction as 6,,,;(0.25)
but outside the ellipsoid Uy:

1.8084
Oout = | —3.5043
1.8084

This vector is well outside the ellipsoid Uy since we have that:

02 Py 00u = 19525 > 7.81

but we also have that:
=0

9(6]0-251 gout) = g(e]0.25) + T(e]0'25)00ut = g(e][)'%),

and therefore g(€/%-?% 0,,;) lies in U(0.25). However, this plant does not
lie in all ellipses as can be seen in Figure 7.1 where it circles around the
origin at high frequencies.

There also exist plants G(z, 0y;s) whose parameter vectors 6,5 & Uy,
but that lie completely in £. According to Theorem 7.4 and Corol-
lary 7.1, these are the plants whose parameter vectors Oy;s lie in Uyp(L) =
Nwero » Co(U(w)) but not in Up. In order to find one of those particular
vectors 0y;s, we proceed like we did to find 6,,;. We choose a particular
frequency wp and we choose a vector in the direction 6, (wp) of the axis
of the cylinder Cy(U(wp)). But, here, we choose this frequency wy in the
middle of the frequency range: wy = m/2 and we choose the vector just
outside the ellipsoid Up:

0.0684
Opis = 0 , oL

T Py Y0his = 9.4501 > 7.81 |
0.0684

In Figure 7.1, we see that the frequency response of the plant G(z, 0;5)
lies in U (w) for each of the plotted ellipses. Since we only plot the ellipses
at a certain number of frequencies, Figure 7.1 alone does not prove that
G(z,0ps) is in L. In Figure 7.2, we have therefore plotted the value of
the function
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Figure 7.2: Values of (9(e7%, 0y:,) — 3(¢))” P(w) ™ (967, Bhia) — 9(¢7%))
as a function of the frequency (solid) and size of the ellipses U(w)
(dashed)

(9(e7, Bbis) — g(e) T P(w) " (g(e7*, Bhis) — g(e7))

at each frequency. We see that these values are, at each frequency,
smaller than 7.81, the size of the ellipses U(w). As a consequence, we
can conclude that G(z, 0y;5) has its frequency response in £ even though
G(z, 0p;s) does not lie in D.

7.10 Conclusions

In this chapter, we have considered linearly parametrized plants G(z, )
whose parameters are normally distributed and we have presented results
about the image £ in the Nyquist plane of a confidence region D in
the space of parametrized transfer functions. We have shown that this
image is made of ellipses at each frequency. However, since the mapping
between these two spaces is not bijective, the image £ in the Nyquist
plane contains more plants G(z,0) than the initial confidence region D.
The image in the Nyquist plane is thus also a confidence region for the
parametrized plants G(z, ) but with a probability level larger than that
of the initial confidence region D.



Chapter 8

Extension to biased model
structures using stochastic
embedding

In Chapter 2, we have introduced an uncertainty set D delivered by
classical prediction error identification methods and to which the true
system (G is known to belong with some prescribed probability. This
uncertainty set D is defined as a set of parametrized rational transfer
functions whose parameter vector lies in an ellipsoidal confidence region.
In Chapters 3, 4 and 5, we have developed some robustness tools for that
uncertainty set D. In the previous chapter, we have analyzed the image
of D in the Nyquist plane for the particular case of linearly parametrized
systems.

The only important restriction in the approach yielding D is that we
assume that the model structure used for the identification is unbiased
and therefore that the true system lies in the chosen model structure. In
this chapter, we show that we can also design an uncertainty set contain-
ing the true system using PE identification with biased model structures
provided that this model structure is linearly parametrized (e.g. FIR
or Laguerre model structure [65, 88]) and that the identification is per-
formed using the stochastic embedding assumptions [47]. The key idea
of PE identification with stochastic embedding assumptions is to con-
sider the unmodelled dynamics just as the noise i.e. as the realization
of a zero mean stochastic process. Using this assumption, the authors
of [47] show that, at each frequency, an ellipse containing the frequency

113
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response of the stable true system at a certain probability level (e.g. «)
can be designed in the Nyquist plane around the frequency response of
the identified model. The ellipse at a particular frequency is constructed
using the probability density function of the frequency response of the
identified model deduced from the stochastic embedding assumptions.
In [1, 79], the ellipses at each frequency have been collected together in
order to make up a dynamic (or frequency domain) uncertainty region !.
The problem with the uncertainty region design presented in the papers
[1, 79] is that, if each ellipse contains the frequency response of the true
system at a probability of a, the probability level of the presence of the
Nyquist plot of G in the tube of ellipses is much smaller as proved in
Chapter 7.

One of the contribution of the present chapter is thus to review the
design of uncertainty sets for a PE identification procedure with stochas-
tic embedding assumptions. We first show that PE identification with
stochastic embedding assumptions allows one to design a set Ds, of (lin-
early) parametrized transfer functions that contains the true system at
a certain probability level (e.g. «) and whose parameter vector is con-
strained to lie in an ellipsoid. This uncertainty set has thus the same
structure as the uncertainty set D presented in Chapter 2. However,
we also show that the parametric description of Dy, is not really “opti-
mal” in this case and we therefore propose another uncertainty region:
a dynamic uncertainty region L corresponding to the image of D, in
the Nyquist plane. The image of D, is obtained using the results of
Chapter 7. The uncertainty region L is made up of a tube of ellipses
in the Nyquist plane around the Nyquist plot of the identified model.
According to Chapter 7, the uncertainty set £ has also the property of
containing the true system at a probability larger than the probability «
related to Dg,. It is to be noted that the matrices defining the ellipses in
our uncertainty set £ are exactly the same as those defining the ellipses
deduced in [47, 1, 79]. However, the size x of our ellipses 2 is different
of the size of the ellipses deduced in these papers.

Another contribution of the present chapter is to extend the stochas-
tic embedding technique to indirect closed-loop identification. In closed-

'In the sequel, we will use the term “dynamic uncertainty region” instead of “fre-
quency domain uncertainty region”.

?Tf we define an ellipse as U = {# | #T RA < x}, the size of the ellipse is the value x
and the matrix defining the ellipse is R.
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loop, we construct a dynamic uncertainty region of closed-loop transfer
functions containing the true closed-loop transfer function. The uncer-
tainty region containing the true open-loop system Gy is then computed
using the knowledge of the controller present in the loop.

The last contribution of the chapter is to give a general expression of
this uncertainty region £ (valid for both the open-loop and closed-loop
cases) that will ease the robustness analysis of £ developed in the next
chapter. In this general expression, the uncertainty part takes the form
of a transfer vector which represents the real and imaginary parts of
the dynamic uncertainty and whose frequency response is therefore real.
This vector appears linearly in both the numerator and denominator.

Chapter outline. In Section 8.1, we briefly review the assumptions of
stochastic embedding. In Section 8.2, we show how we can perform a PE
identification procedure using the stochastic embedding assumptions. In
Section 8.3, we then present the way to construct an uncertainty set with
PE identification with stochastic embedding assumptions in open loop.
In Section 8.4, we show that such an uncertainty region can also be
deduced using data collected in closed loop. We then give the general
expression of the uncertainty region deduced from PE identification with
stochastic embedding assumptions in Section 8.5.

8.1 General assumptions on the true system

In the previous chapters, we have reduced the gap between PE identifica-
tion with unbiased model structures and Robustness theory. Indeed, we
have shown that such an identification procedure delivers an uncertainty
set that contains the true system and for which we have developed some
robustness tools. The aim of this chapter is to extend the results of the
previous chapters to the case of biased model structures using stochastic
embedding [47]. In this first section, we will present the assumptions we
need to make for this purpose on the used model structure M and on
the stable, LTI, rational true system Gj:

y(t) = Go(2)u(t) +v(t). (8.1)

Let us consider that we want to identify a model of the true system
in the following linearly parametrized model structure M:
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A(z)
M ={G(2,0) € RHy | G(2,0) = ( A1(2) Aa(2) ... Ag(z) )0},
(8.2)
where §# € R**! is the parameter vector and the A;(z) (i = 1..k)
are stable transfer functions (e.g. FIR of Laguerre functions [65, 88]).

This model structure is biased i.e. there does not exist a 6y such that
GU = G(Z, 00)

The property that allowed us to design an uncertainty set containing
the true system with PE identification with unbiased model structures
was the fact that the only source of error between the identified model
and the true system (i.e. the measurement noise v(t)) was assumed to
be the realization of a zero mean stochastic process. With biased model
structures, the measurement noise is not the only source of error. The
undermodeling is also another one. The key idea of stochastic embedding
is to consider this second source of error just as the first one i.e. as
the realization of a zero mean stochastic process, independent of the
noise. Note that although this assumption is nonstandard in classical PE
identification, this remains in the general philosophy of PE identification
since the bias error is considered in the same way as the measurement
noise in classical PE identification. Let us now recall this key idea more
formally.

Assumption 8.1 ([47]) The key assumption in stochastic embedding
is that (8.1) can be decomposed in the following expression:

y(t) = G(z,00)u(t) + Gal(z)u(t) + Ho(z)e(t) (8.3)

where G(z,0p) € RHy is a transfer function lying in M and parametrized
by an unknown vector 0y. Ga(z) € RHq represents the (possibly in-
finite) unmodelled dynamics that is assumed to be the realization of a
stochastic process with zero mean, independent of the additive noise
v(t) = Hy(2)e(t). It is further assumed that the impulse response co-
efficients 1, of Ga(z) = >, nnz"™ have a variance that dies at an
ezponential rate : E(n2) = BA" (E(n,) = 0). As a consequence, there ex-
ists a number L 3 such that Ga can be approzimated sufficiently closely

by

3The choice of L will be discussed in the sequel.
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L
Ga(z) = maz ™ 2T(2)n, (8.4)
n=1

where I(z) = (27" 272 .. 27l ) andn" =(m m2 .. n1).

8.2 PE identification with stochastic embedding
assumptions

Using Assumptions 8.1, we can perform a PE identification procedure
on the true system Gy using N input and output data. This identifi-
cation delivers a model G(z,0) € M. As the unmodelled dynamics are
considered as the realization of a zero mean stochastic process, the total
error between the true system and the identified model G(z,6) is made
up of the sum of variance contributions only, wherein the contribution
of the unmodelled dynamics is computed by estimating the parameters
describing its variance (i.e. S and A). The total error is thus a func-
tion of the stochastic parameters describing Ga(z) (i.e. 8 and \) and
of the stochastic parameters y describing v(¢) . These parameters can
be estimated from the data y(¢) and u(¢) using a maximum likelihood
technique. In that sense, the computation of the total error follows a
procedure very similar to the one used to compute the variance error
in classical prediction error identification theory with unbiased model
structures (see [63] and Sections 2.1.2 and 2.1.3). Let us now summarize
the results of PE identification with stochastic embedding assumptions
in the following proposition.

Proposition 8.1 ([47]) Let us consider a stable true system Gq sat-
isfying Assumptions 8.1 and the model structure M defined in (8.2).
Let us also consider N measured inputs u(t) and the corresponding N
outputs y(t) generated by (8.3). A PE identification procedure delivers
then an identified parameter vector 6 defining a model G(z,é) € M.
Moreover, if we rewrite the error between Go(z) and the identified model

“The stochastic parameters v describing v(t) may contain the parameters of the
noise model Hy(z) as proposed in [1]. Alternatively, it is possible to use a high
order identified model of Ho(z) as approximation of this noise model; and then the
only stochastic parameter of the noise v(t) is the variance o2 of the white noise e(t):

_ 2
v =o..



118 Extension to biased model structures using stochastic embedding

G(z,0) as follows using (8.2) and (8.4):

I'(z) /—!%
(")

. (8.5)

the vector p is then asymptotically a random wvector with Gaussian dis-
tribution, zero mean and covariance C,:

p~ AsN(0,C,) (8.6)

where C, € RFHLXE+L) s an unknown symmetric positive definite
matriz which is a function of the stochastic parameters 3, A and 7.
Besides the identified parameter vector é, the PE identification procedure
also delivers an estimate P, of C, obtained using the estimates B, X and
Y of B, X\ and v derived from a maximum likelihood procedure.

Remarks.
e More details can be found in Appendix B.

e The quality of the description of the error between Gy and G(z, é)
is of course influenced by the number N of measured data, the
quality of the estimates (B, X and 7) of the stochastic parameters
resulting from a nonlinear optimization (i.e. the maximum likeli-
hood technique) and by the relevance of the stochastic embedding
assumptions (choice of L, ...).

e In [37], the authors present a new version of stochastic embed-
ding where the undermodeling is represented by a multiplicative
perturbation. One of the main advantage of this new stochastic
embedding is that the procedure to estimate the stochastic param-
eters is linear.

e The choice of L can now be discussed. This choice can be divided
in two steps. In a first step, we choose L large (e.g. L = N) and
we use the maximum likelihood technique to find estimates B and
X of B and A. Using these “accurate estimates”, the “final” L is
chosen such that:

BAE < &

where ¢ is very small.
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8.3 Design of uncertainty regions using stochas-
tic embedding in open loop

In the previous section, we have presented the results related to a PE
identification procedure with biased model structure and stochastic em-
bedding assumptions. These results allow one to design different types
of uncertainty regions containing the true system at a certain probabil-
ity level. We first show that one of these types is an uncertainty set
D having the same structure as the uncertainty set D delivered by PE
identification with unbiased model structures.

8.3.1 Design of the uncertainty set D,,

The properties presented in Proposition 8.1 are equivalent to those pre-
sented in Proposition 2.2 that have allowed us to construct a uncertainty
set containing the true system at a certain probability level in Chapter 2.
Using a similar procedure, an uncertainty set D4, having the following
form is constructed.

Dye = {G(z,p) | G(z,0) = G(z) + T(D)p with p € Uye}  (87)

Use = {P | pTPp_lp < X} (8'8)

where G/(z) 2 G(z,0) and p is a real parameter vector of size k + L.
This uncertainty set has the following property.

Proposition 8.2 Let us consider a true system Gy satisfying Assump-
tions 8.1. Then, the uncertainty region Ds. defined in (8.7) contains G
at a probability level a(k + L, x): Pr(x*(k+ L) < x) = a(k + L, x).

Proof. According to (8.6), the vector p defined in Proposition 8.1 lies
in U, with probability a(k + L, x). We can then conclude that G lies
in D, at the same probability level since, using (8.5), we can rewrite G
as G(z,p). O

The uncertainty region Dy, has the general structure presented in (2.44).
As a consequence, the results of Chapters 3, 4 and 5 can be used
to assess the quality of D and/or to validate a controller for sta-
bility and performance with respect to Dg. However, the statement
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Gy € Ds, given in Proposition 8.2 is based on the approximation (8.4)
that boils down to neglect the part > >° 41 Mz " of the undermodeling
Ga = Y .2 mmz~". This can be misleading for robust control design
since (8.4) is only an approximation in practice. A solution to avoid this
problem is to use a dynamic uncertainty region as we will see in the next
section. A dynamic uncertainty region is an uncertainty region that is
not bounded by a constraint on a parameter vector but by a constraint
on the frequency response of the plants in that uncertainty region.

8.3.2 Dynamic uncertainty region £,

A possibility to design such dynamic uncertainty region is to take the
image L, 3 of D, in the Nyquist plane using the results presented in
Chapter 7. Using Theorem 7.3, this image L, is given by

Lo ={G(2) | 9(¢’*) € U(w) Yw} (8.9)

Uw) = {g € R"! | (9= g(¢) " P(w) " (g — §(¢*)) <x}  (8.10)

with P(w) = T(e?*)P,T(e’*)", x as defined in (8.8) and
gy _ [ Re(G(e®) wy _ ( Re(T(e))
9e™) = ( Im(G(e7*)) > () = ( Im(T' (%)) >

In order to clear up and to simplify the notations, let us rewrite the
dynamic uncertainty set L, as follows.

Lot ={Gin(2) | Gin(2) = G(2,0) + A(z)  with A(z) € RHo

Re(A(e)
ot ( i ) =0 “en

Un(w) = {g € R*”" | g" P(w)"'g < x}. (8.12)

The dynamic uncertainty region L, that we have just designed has the
following property.

®We have changed the subscript “se” into the subscript “ol” in order to may
differentiate L£,; obtained with open-loop stochastic embedding from L.; that will be
deduced from closed-loop stochastic embedding.
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Proposition 8.3 Let us consider a true system Gy satisfying Assump-
tion 8.1. Then, the uncertainty set Ly defined in (8.11) contains Gy with
a probability larger than a(k + L,x): Pr(x*(k+ L) < x) = a(k + L, x).

Proof. According to Proposition 8.2, G lies in Dy, with probability
a(k+ L, x). Since Ly is the image of D, in the Nyquist plane, the true
system G lies therefore in £, with a probability larger than a(k+ L, x)
(see Theorem 7.5). O

The true system Gy lies thus in £, and in Dg.. So, if we stay in the
framework defined in (8.4), there is no need to use L,; instead of Dge.
However, the expression (8.4) is only an approximation. In practice, we
do not have that:

o0
Z 2" =0,

n=L+1

As a consequence, the structure of Ds, may not contain the “real” true
system as opposed to the structure of L£,. Indeed, with respect to Ds,,
the dynamic uncertainty region L£,; has the complementary advantage of
containing systems having a more complicated structure than G(z, p) but
whose frequency response is sufficiently close to the frequency response
of the plants in Ds.... such as the “real” true system. Indeed we have
that:

€Dse

— o
Go(2) = Gz,p) + Y maz "
n=L+1

Go(e’?) = G(e7°, ) Vw.

In the sequel, we will therefore always use L, instead of Dyge.

Let us summarize. Using the stochastic embedding assumptions, we
have developed a methodology that has allowed us to design a dynamic
uncertainty region L, containing the true system with a probability
larger than a given level in the case of an open-loop identification with
a biased model structure M. In the next section, we will show that
such uncertainty set can also be deduced from an indirect closed-loop
identification with biased model structure.
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8.4 Extension to indirect closed-loop PE identi-
fication with stochastic embedding assump-
tions

Let us consider again the closed-loop experiment design presented in Sec-
tion 2.2.4. We consider thus a controller K which forms a stable closed
loop with the stable true system Gg defined in (8.1). Our procedure to
design an uncertainty set £ with stochastic embedding in closed loop is
very similar to the one used in the case of unbiased model structures:
it consists of first designing a frequency domain uncertainty region con-
taining one of the four transfer functions of the matrix T'(Gy, K) defined
in (2.27) and then to back-compute the uncertainty region containing
Go. We give here the procedure for the closed-loop transfer function TO1
defined in (2.29). We then have to assume that K and K ! are stable
[21]. Similar procedures exist for the other three closed-loop transfer
functions.

Let us thus collect N experimental data r1(¢) and y(¢) on the closed
loop presented in Figure 2.1 and composed of the true system Gy and
the stabilizing controller K:

GoK Hy

= mn(t) + m@(t) = Tiry(t) + 0(t) (8.13)

y(t)
As the loop [K G))] is stable, it is possible to use the procedure presented
in Section 8.3 to design an uncertainty region L1 of closed-loop transfer
functions containing Tol. For this purpose, we define a biased model
structure for TO1 as follows

M ={T(2,§) € RHx | T(2,§) = Aa(2)¢}, (8.14)

where ¢ is a parameter vector and A (z) a row vector containing known
transfer functions. We rewrite also (8.13) in a way similar to (8.3):

y(t) = T(z,80)r1(t) + Ta(z)ri(t) + 0(F) (8.15)

where T is decomposed into a model T'(z, £y) € M, and the unmodelled
dynamics Ta(z). Using the procedure given in Section 8.3, we may
deduce the uncertainty region L1 containing T with a probability larger
than a given level:
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T(Z)A
Lr = {Tin(2) | Tn(2) = T(2,€) +A(2) with A(2) € RHx

Re(A(e))
and< Im(A(e7)) > € Ug(w) Va;} |
8.16

where T' = T(z,£) € RHy is the identified model and Uy (w) is an el-
lipse having the same form as the one defined in (8.12).

The set L is a set of closed-loop transfer functions. The corre-
sponding set of open-loop transfer functions is now constructed. As
Gy = Ty /(K(1 — T})), the open-loop transfer function Gj,(z) corre-
sponding to T;,(z) is given by:

Gin(z) = == x —m#) (8.17)

In particular, the nominal open-loop model G(z,€) corresponding to
T =T(z,¢) is given by:

G@@:%xi%%% (8.18)

As we assume that the true system G is stable, we also assume that
this open-loop model G(z,§) is stable. The set L of open-loop plants
Gin corresponding to the set L1 of closed-loop transfer functions T;, is:

Lo ={Gin(z) | Gin(z) = % with A(z) € RHy
Re(A(e?))
and< Im(A(e7)) > € Uy(w) Vw}
(8.19)

The frequency domain uncertainty region L. can be rewritten as follows
using (8.18).
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¢ 1+KG(z,EN)

Glzdn)+—F .
Lo ={Gin(2) | Ginlz) = TENE S with A(2) € R

Re(A(65)
it ooy ) 0 vw(}s 20)

Properties of £,. According to the results of the previous section,
the true closed-loop transfer function Ty lies in L1 with a probability
larger than a given level. As a consequence, the true system Gy =
T)/(K(1 —T})) lies in the frequency domain uncertainty region L
with the same probability.

8.5 General structure of the uncertainty regions
obtained from PE identification with biased
model structures

In the previous subsections, uncertainty regions L, and L. containing
the true system have been obtained as a result of open-loop or “in-
direct” closed-loop PE identification with biased model structures and
stochastic embedding assumptions, respectively. In both cases, these un-
certainty regions take the form of a set of open-loop transfer functions
(around some center) defined by a dynamic uncertainty A(z) € RHso
whose frequency response is bounded at each frequency by an ellipsoid
in the Nyquist plane. In the following proposition, we show that £, and
L. can be described using the same generic expression £. The form of
this generic expression has been chosen very similar to the structure of
the uncertainty region D defined in (2.44) in order to ease the robustness
analysis of £ that will be developed in the next chapter. For this pur-
pose, let us define the RI vector d(z) corresponding to the uncertainty
transfer function A(z).

Definition 8.1 (The RI vector §(z) corresponding to A(z)) Let A(z)
be the stable uncertainty transfer function present in (8.11) and (8.20).
We define the RI vector §(z) as follows:

5(z) = < ﬁz((i(é)))) ) (8.21)
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Note that the frequency response d(e’*) of 6(z) is, at each frequency,
real: §(e/¥) € R**! V.

Proposition 8.4 Consider the true open-loop dynamics Gy. The un-
certainty regions Lo and Lo given in (8.11) and (8.20), respectively,
and containing Gy with a probability larger than a given level have the
general form of a frequency domain uncertainty region L where the un-
certainty part is the RI vector 6(z) (see Definition 8.1).

~

G(z) + Zn(2)d(z)
1+ Zp(2)d(z)

L= {G(z,é(z)) | G(z,0(2)) = with §(e’*) € U(w) Yw

(8.22)

Uw) = {6(ej“’) e R?*! | 5(ej“’)TR(w)5(ej“’) <1} (8.23)
where

e R(w) are symmetric positive definite matrices € R?*2. These ma-
trices are different at each frequency w.

e Zn(2) and Zp(z) are stable row vectors of length 2 containing
known transfer functions.

. G’(z) € RHy is a known transfer function that can be considered
as the center of L 5.

Proof. Let us first prove that £, can be expressed as in (8.22). This
can be done by considering Expression (8.12) of U, (w) and by rewriting
expression (8.11) of £, using (8.21):

Lo = {Gin(2) | Ginl2) = G(2,0) + (1 j ) 0(2) with §(e/*) € Uy (w) Yoo}
(8.24)

which is in the form (8.22) with Zy = (1 j), Zp = (0 0), G(z) =
G(z,0) € RHy and R(w) = P(w)~!/x.

Swe call “center of the uncertainty region £” the system corresponding to §(z) =0
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Now consider £, and rewrite expression (8.20) using (8.21) and de-
noting G(z) = G(z,£):

G+ EEE (1§ Yoz

1H(-1-KGE)( 1 f )o) and

Lo ={Gin(2) | Gin(2) =

§(e7¥) € Uy(w) Yw}
(8.25)
which is clearly in the form (8.22). Note that G(z) = G(z,£) is assumed
stable; hence, Zn(z) and Zp(z) are also stable since the controller K
is stable and non-minimum phase according to [21]. This completes the
proof. O

Remarks.

e The center G (2) 0}” the uncertainty region L is given by the iden-
tified model q (z,0) in the open-loop case and, in the closed-loop

case, by G(z,¢), the open-loop model corresponding to the identi-
fied closed-loop model T'(z,&): see (8.18).

e The uncertainty set £ has a particularity with respect to the clas-
sical linear fractional dynamic uncertainty regions such as addi-
tive or multiplicative uncertainty sets (see (2.45) for the additive
uncertainty set). Indeed, the uncertainty part 0(z) is not a clas-
sical transfer function but is a “transfer vector” whose frequency
response is real”. Therefore, the classical tools of Robustness The-
ory can not be used for £. However, the uncertainty set £ has a
structure that is very similar to the one of the uncertainty region
D delivered by PE identification with unbiased model structures
and for which we have developed robustness tools in the previous
chapters. The only difference is that the uncertainty domain of
d(z) is here different at each frequency. This similarity will help
us to develop robustness tools for this uncertainty region L.

8.6 Conclusions

In this chapter, we have shown that a PE identification procedure with
a biased model structure allows one to design a dynamic uncertainty

"Such a description is due to the ellipsoidal uncertainty domain U(w) at each
frequency.
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set £ containing the true system with a probability larger than a given
level. Moreover, we have also shown that this particular uncertainty
region presents similarities with the uncertainty region D delivered by
PE identification with unbiased model structures.
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Chapter 9

Robustness analysis of £

In the previous chapter, we have introduced a dynamic uncertainty re-
gion L. This uncertainty region containing the true system with a prob-
ability larger than a given level is the uncertainty region obtained after a
PE identification with biased model structure and stochastic embedding
assumptions. The uncertainty region £ is made up of transfer functions
parametrized by a transfer vector' §(z) which represents the real and
imaginary parts of the dynamic uncertainty and whose frequency re-
sponse is real. The uncertainty vector §(z) is constrained to lie at each
frequency in an ellipse.

Let us now consider that a PE identification procedure has deliv-
ered such uncertainty set L. Let us also consider that we have chosen
a model G,,,q for control design (e.g. the center of £) and that we
have designed a controller C' from that model G,,,q. In order to vali-
date the controller C' with respect to the uncertainty region £, we will
develop, in this chapter, robust stability and performance analysis tools
for such uncertainty set. These tools are the same as those developed
for the uncertainty set D in Chapters 4 and 5 i.e. a necessary and suf-
ficient condition for the stabilization of all plants in £ by the controller
C (controller validation for stability) and a procedure to compute the
worst case performance achieved by C over all plants in £ (controller
validation for performance). These robustness tools give therefore a con-
dition guaranteeing the stabilization of the unknown true system Gy by
the controller C' and a lower bound of the performance achieved by the

!We use the term “transfer vector” with some abuse. The vector §(z) is in fact a
function of a complex variable.

129
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controller C on the true system.

In order to obtain these robustness tools, we will use the similarities
between the structure of £ and D. In that sense, our main contribution
concerning the robustness analysis of uncertainty sets deduced from PE
identification with stochastic embedding assumptions, has been achieved
in the last section of Chapter 8. In that section, we have indeed expressed
the general structure of £ so that the tools developed in Chapters 4 and 5
for D can be easily adapted for L.

Robust stability analysis. Just as for the uncertainty region D, the
necessary and sufficient condition for the stabilization of all plants in £
by C' is thus derived from the LFT framework of the uncertainty region
L. Indeed, we show that one can rewrite the closed-loop connection of
the controller C' and all plants in the uncertainty region £ as a particu-
lar LF'T where the uncertainty part is a transfer vector whose frequency
response is real. In that particular LF'T, the (real) stability radius can
be computed exactly, using the result presented in [53, 72].

Our robust stability analysis tool is “better” than the one obtained
in [79]. In [79], the authors present an LET description of the closed-loop
connection of the controller C' and all plants in an uncertainty region
L, where the ellipsoids at each frequency are approximated by a mixed
perturbation set. The main advantage of our LFT description is that it
exactly represents the closed-loop connection of the controller C' and all
plants in the uncertainty region £ without any approximation.

Robust performance analysis. Just as for D, our robust perfor-
mance analysis tool for £ is based on the computation of the worst case
performance of a closed-loop made up of the considered controller and
a system in the uncertainty region £. The performance of a particular
loop made up of the controller C' and a plant in L is here also defined as
the largest singular value of a weighted version of the matrix containing
the four closed-loop transfer functions of this loop. Our definition of
the worst case performance is thus very general and, by an appropriate
choice of the weights, allows one to derive most of the commonly used
worst case performance measures such as e.g. the largest modulus of
the sensitivity function. Our contribution is to show that the computa-
tion of the worst case performance can be formulated as an LMI-based
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optimization problem. Just as in the case of D, the LMI formulation
of the problem uses the fact that the uncertainty part (i.e. the transfer
vector 0(z)) of the uncertainty region £ appears linearly in the expres-
sion of both the numerator and the denominator of the systems in the
uncertainty region £ and, as a consequence, also appears linearly in the
expression of the different closed-loop transfer functions.

If you are only interested by the largest modulus of one closed-loop
transfer function (e.g. the sensitivity function), our LMI-optimization
is not necessary. Indeed, in this case, the computation of the worst case
performance can also be achieved by using the fact that an ellipse of
uncertainty for the open-loop system maps into an ellipse of uncertainty
for the closed-loop system (see [81, 30] for the case of a disk). However,
this result can not be used to compute our more general worst case
performance criterion. Our optimization approach has also the further
advantage that it can easily be extended to the multivariable case.

Chapter outline. In Section 9.1, we present our procedure to validate
a controller for stability with respect to an uncertainty set £. In Sec-
tion 9.2, we present the LMI procedure allowing the exact computation
of the worst case performance achieved by a controller C' over all plants
in L. In Section 9.3, we present a simulation example and we finish by
drawing some conclusions in Section 9.4.

9.1 Robust stability analysis of £

As said in the introduction, the aim of this first section is to validate
a given controller for stability i.e. to find a necessary and sufficient
condition for the stabilization of all plants in an uncertainty region £
by this controller. Robust stability theory provides such necessary and
sufficient conditions [34, 31, 92, 68, 53]. But for the application of ro-
bust stability results, it is required that the closed loop connections of
this controller to all plants in the uncertainty region be rewritten as a
set of loops that connect a known fixed dynamic matrix M(z) to an
uncertainty part A(z) of known structure that belongs to a prescribed
uncertainty domain.
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9.1.1 LFT framework for the uncertainty region £ and a
controller C

Just as was done for the uncertainty set D in Chapter 4, a first step is
to find the particular set of loops, given in the general LF'T framework,
that correspond to the closed-loop connections of all plants in £ with
C. This is achieved using the following theorem which is very similar to
Theorem 4.1.

Theorem 9.1 (LFT framework for £) Consider an uncertainty re-
gion L of plant transfer functions given by (8.22) and a controller C(z) =
X(2)]Y (2) 2. The set of closed-loop connections [G(z,8(z)) C] for all
G(z,0(z)) € L can be rewritten into to the set of loops [Mr(z) 0(2)]
which obey the following system of equations

p=0(2)q
{ q= Mg(2)p (6.1)

The uncertainty part (i.e. the RI wvector 6(z)) has a real frequency
response 6(e/¥) that is constrained to lie, at the frequency w, in the
normalised uncertainty domain: |T(w)6(e?)]; < 1. T(w) € R¥? is
a square root of the matriz R(w) defining U(w) in (8.22): R(w) =
T(w)'T(w). Mg(2) is a row vector of transfer functions of length 2
defined as:

X(Zy — GZp)

Mg(z) =—(Zp + =
c(2) (Zp Y X

). (9.2)

Proof. The closed-loop connection of C' and a particular plant G(z,d(2)) =
(G+ Znd(2))/(1 + Zpd(z)) in L (see (8.22)) is given by

_ G+zyi(2) . _ A, (Zn=GZDp)i(2)
v = Trzme v = (G + Sz 9.3)
u=—Cy
By introducing two new signals ¢ and p, we can restate (9.3) as
H(z)
N A L[
Yy ZN — GZD G (% (9'4)
p=04(2)q
u=—-Cy

2X(z) and Y (2) are the polynomials corresponding to the numerator and to the
denominator of C(z), respectively
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By doing so, we have isolated the uncertainty vector d(z) from the known
matrix H(z) and the controller C'(z). The variables y and u are now
eliminated from (9.4), yielding the following system of equations which
is equivalent to (9.1):

p=104(2)q
Mg (2)
’ Cn —C ). (9:5)
_(_g _CUn-GZp)
q=(-Zp TG )P

The system (9.5) is equivalent with the closed-loop connection of a
particular G(z,d(z)) in £ with the controller C'. In order to consider the
closed-loop connections for all plants in £, we have to consider all §(z)
such that d(e/¥) € R**! lies in the ellipsoid U (w) given by:

U(w) = {5(e7) | 6(e)T R(w)d(e/) < 11. (9.6)

This last expression is the uncertainty domain of the uncertainty vec-
tor d(z) at the frequency w. This uncertainty domain can be normalized.
Using R(w) = T(w)TT(w), we see that

5(e') € Uw) & (T(w)d(e?)T(T(w)d(e?¥)) < 1 <= |T(w)d(e’)|, < 1
(9.7)

The set of loops [M, 6(z)] for all §(z) such that 6(e?) € R**! lies

in the uncertainty domain |T'(w)d(e’“)|s < 1 is therefore equivalent to
the set of closed-loop connections [G(z,d(z)) C] for all plants G(z,0(z))
in £. This completes the proof. O

9.1.2 Robust stability condition for the uncertainty re-
gion L

Theorem 9.1 allows us to “transform” our problem of testing if the con-
troller C' stabilizes all the plants in the uncertainty region £ into the
equivalent problem of testing if the set of loops [M,(z) §(z)] are sta-
ble for all §(z) such that §(e/“) € R?>*! lies in the uncertainty domain
|T(w)6(e’*)|o < 1. This equivalent set of loops is very similar to the set
of loops [M(z) f] presented in Section 4.1 and for which there exists a
robust stability theorem (see Proposition 4.1). The only difference is the
size of the uncertainty domain which is here different at each frequency.
As a consequence, Proposition 4.1 can not be used to find a necessary
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and sufficient robust stability condition for the uncertainty set £. How-
ever, we can derive the necessary and sufficient robust stability condition
after a last effort of normalisation and using the following property of
the stability radius of the loop [M(z) ] (which is a direct consequence
of its definition (4.3)).

Proposition 9.1 Consider a known complex vector M € C'™? and g €
R We have that 1 — MB # 0 for all B such that |B|> < 1 if and

only if

u(M) <1 (9.8)

where [ is the stability radius defined in (4.3).

Theorem 9.2 (robust stability condition) Consider an uncertainty
region L of plant transfer functions having the general form (8.22) and
let C' be a controller that stabilizes the center G(z) of L. All the plants
in the uncertainty region L are stabilized by the controller C' if and only
if, at each frequency w,

P(Me ()T Hw)) < 1. (9.9)

with p, the stability radius defined in (4.3), R(w) = T(w)TT(w) and
M (z) as defined in (9.2).

Proof. By Theorem 9.1, our problem of testing if the controller C
stabilizes all the plants in the uncertainty region £ is equivalent to test-
ing if the set of loops [M,(z) d(z)] are stable for all §(z) such that
5(e’) € R?*! lies in the uncertainty domain |T'(w)d(e’¥)|s < 1.

A first step of this proof is to observe

e that M,(z) is stable. Indeed, its denominator contains the de-
nominator of the sensitivity function of the closed loop [C G(z)],
which is stable by assumption, and the denominators of Zy(z) and
Zp(z) which are also stable according to Proposition 8.4;

e that, by Definition 8.1, A(2) = (1 j)d(2) with A(2) € RHx;
{0(2) |

e and that the uncertainty domain of §(z) i.e. Dom(d(z)) =
|T(w)6(e’*)|2 < 1 Vw} is connected and contains d(z) = 0.
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A first conclusion that follows from these observations is that one of
the considered loops i.e. [M,(z) §(z) = 0] is guaranteed to be stable. As
a consequence, using the fact that Dom(d(z)) is connected and the fact
that A(z) € RHy, the set of loops [M,(z) d(z)] are internally stable
for all 6(z) € Dom(d(z)) if and only if, at each frequency w,

1 — Mp(e79)5(e?) #0 Yo(e’) such that |T(w)d(e’*)]z < 1. (9.10)

A final normalisation shows that expression (9.10) is equivalent with
the statement (9.9). Indeed, if, at each frequency w, we define a real

vector ¢(e/*) 2 T (w)d(e), then, (9.10) is equivalent with:

1— Mg ()T (w)p(e?) # 0 Vp(e?) such that |p(e’)]y <1 (9.11)

Since ¢(e¥) is real, this last expression is equivalent with (9.9), by
Proposition 9.1. O

Theorem 9.2 gives a necessary and sufficient condition for the sta-
bilization of all plants in £ by any controller that stabilizes @(z), the
“center” of L. This necessary and sufficient condition involves the com-
putation at each frequency of the stability radius pu(Mg(e?)T~(w)),
which is achieved using Definition 4.1. Since the true system lies in L,
Theorem 9.2 gives also a condition guaranteeing that the controller C
stabilizes the unknown true system Gj.

9.2 Robust performance analysis of £

In this section, we show that we can evaluate the worst case performance
achieved by some controller C' with all systems in the uncertainty region
L, i.e. the worst level of performance of a closed loop made up of the
connection of the considered controller and a particular plant in £. This
worst case performance is of course a lower bound for the closed-loop
performance achieved with the true system. We say that a controller
is validated for performance if the worst case performance in £ remains
below some threshold.

The worst case performance criterion over all plants in an uncertainty
region L is defined in a similar way as has been defined, in Section 5.1,
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the worst case performance achieved by a controller C' over the plants
in the uncertainty region D.

Definition 9.1 Consider an uncertainty region L of systems G(z,6(z))
whose general structure is given in (8.22). Consider also a controller
C(z). The worst case performance achieved by this controller at a fre-
quency w over all systems in L is defined as:

Twe(L,C Wi, Wr,w) = max_ o1 (WIT(G(e,5(e)), C(e?)W, ),
(9.12)

where Wi(z) = diag(Wi1, Wi2) and Wy(z) = diag(Wy1, Wye) are diagonal
weights, o1(A) denotes the largest singular value of A, and T(G,C) is
the transfer matriz of the closed-loop system defined in (3.3).

The worst case performance Jy¢ can be computed at a given fre-
quency using an LMI based optimization problem. The LMI procedure
is now given in the following theorem. Note that this procedure is very
similar to that used in Theorem 5.1 to compute the worst case perfor-
mance in the uncertainty set D.

Theorem 9.3 Consider an uncertainty region L defined in (8.22) and
a controller C(z) = X(2)/Y (2) 3. Then, at frequency w, the criterion
function Jwo(L,C, W, W,,w) is obtained as

JWC'(ﬁa Ca WlaWT'aw) =V Yopts (913)

where Yopt 5 the optimal value of vy for the following standard convex
optimization problem involving LMI constraints evaluated at w:

minimaize y
over v, T

] >
subject to >0 and (9.14)

where

3X(z) and Y (2) are the polynomials corresponding to the numerator and to the
denominator of C(z), respectively
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o an = (ZNWiWinZn + ZpWinWieZp) = 7(QZ1 Z1)

o ajg = ZEWiEWnG + WiWinZh — v(QZi (Y + GX))

o ayp = GWWnG + WisWe —v(Q(Y + GX)*(Y + GX))

e Q=1/(X*WAWnX +Y*W5HW,Y)
Proof. In order to ease the establishment of the proof, we rewrite
the weighted matrix T, (z,6(2)) £ WiT(G(z,6(2)), C(2)) Wy, using the

definition of the closed-loop transfer matrix 7" in (3.3) and the expression
of G(z,0(z)) in (8.22):

< Wi X(G+ Zn6(2))Wy1 WnY (G + Zni(2)Wis )
ngX(l + Zpé(z))er ngY(l + Zpd(z))W,«g

Y +GX + (XZx + Y Zp)é(2)

Tw(z,0(2)) =

(9.15)
It is important to note that Ty, (z,0(2)) is of rank one. As a result (9.15)
can be written as follows:

W11(¢+ZN5(Z))
Tu(2,0(2)) = | WS | (XWn YW, ) (9.16)
Y4+GX+Z18(2)

with Z1 = XZn + Y Zp. Using the above introduced notations, we can
now state that proving Theorem 9.3 is equivalent to proving that the
solution vy of the LMI problem (9.14), evaluated at w, is such that:

v/ Yopt = MaAX§(gjw)el(w) O1 (T’w(ejwa 5(6jw))) —
Yopt = MaXs(giw)er(w) M (Tw(e?”, 8(e7)) Ty (7, 5(e7*)))
where U(w) = {§(e?) | 6(e’*)T R(w)d(e’?) < 1}, and where o1 (A) and
A1(A) denote the largest singular value and the largest eigenvalue of A,

respectively.

An equivalent and convenient way of restating the problem of com-
puting max;gjwycp(w) At (Tw(e’, 6(e’)) Ty (€7, 0(€7))) is as follows:
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manimaize y such that

A1 (T (€79, 5(e79)) Ty (€79, 6(e79))) —y < 0 Vo(el¥) € U(w).

Since Ty, (e’*, §(e’*)) has rank one, we have:

A (T (€7, 6(e7))* Ty (7, 6(679))) — 7 < 0 <=

Y+GX+Z16(elv) Y+GX+Z16(ev) 1
Win(147p8(e7)) w(szpie) | g =T <0

Y+GX+Z16(ew) Y+GX+Z16(eiw)

Wir (G+2Zn3(ei#)) '\ * Wi (G+2Zn6(e7))
Y+GX+Z16(eiv) Y+GX+Z16(eiv)
Wip (1425 3(e7%)) ( L0 ) Wo(+Zp8e=) | <0 (9.17)
Y +GX+710(e3%) 0 —Q Y +GX+710(e3%)

1 1

where Q = 1/(X*W W X + Y*W,W,.0Y). By pre-multiplying (9.17)
by (Y + GX + Z16(¢/%))* and post-multiplying the same expression by
(Y + GX + Z16(e’?)), we obtain:

Wi (G + Zno(e)) \ L 0 Wi (G + Zno(el¥))
ng(} + ZDé(eW.)) < 0 —’}’Q > Wl?(} + ZD(s(B]w.)) <0
Y +GX + Z16(e7¥) Y +GX + Z16(e??)

(9.18)
which is equivalent to the following constraint on §(e/“’) with variable v

() () (7 ) <0

with a1y, aio and agy as defined in (9.14). Since d(e/*) is real, it can be
shown that (9.19) is equivalent with
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This last expression is equivalent to stating that A;(T,,(e’,d(e’¥))*
Ty (e, 5(e7*))) — v < 0 for a particular §(e/*) in U(w). However, this
must be true for all §(e’*) € U(w). Therefore (9.20) must be true for
all §(e/*) such that

p(8(e7))

A
7 N

(T (5 ) (T o

which is equivalent to the statement “d(e/*) € U(w)”.

Let us now recapitulate. Computing maxseiv)ep (w) A (T (7%, 5(e%))*
T (€%, 5(e7*))) is equivalent to finding the smallest y such that 1(5(e/)) <
0 for all §(e/*) for which p(5(e’¥)) < 0. By the S procedure [55,
17], this problem is equivalent to finding the smallest v and a posi-
tive scalar 7 such that (5(e’*)) — Tp(d(e’*)) < 0, for all §(e/¥) €
R?*! which is precisely (9.14). To complete this proof, note that since
M (T (e7%,6(e79))* Ty (7%, 5(e7%))) = o2(Tw(e??,6(e’?))), the value
MAaX;(ejw)et(w) O1 (Tw(e’™,6(e7%))) at w is equal to \/Yopr, Where oy is
the optimal value of +. O

9.3 Simulation example

To illustrate our results, we present an example of controller validation
based on an uncertainty region L,; design using a PE identification pro-
cedure with stochastic embedding assumptions in open-loop. The open-
loop model G(z, é), center of L, is used to design the “to-be-validated”
controller C'. This controller is then validated for stability using the
procedure of Section 9.1, and for performance using the procedure of
Section 9.2.

Identification step. Let us consider the same true system G, as
in [47]:

Go
7 0.035527" +0.0247272
©1-1.2727271 4 0.33292 2

y(t) u(t) + e(t)

where e(t) is a white noise with a variance equal to 0.005. The sampling
time is 1 second. We simulate this system collecting 300 data from which
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we use the last 50 for least-square model fitting ( the first 250 are used
to get rid of initial condition effects). As in [47], we choose a second
order Laguerre model of the form (the pole of the Laguerre model is
chosen near the dominant pole of Gjy):

~0.9063 027" 6,271(0.7311 — 0.89542")
1-10.8187z1 (1 —0.81872"1)2

G(z,[01,6])")
Using the 50 data, the identified parameters are:

0, = 0.1129 fHy = —0.0689

Design of the uncertainty region £,. The uncertainty region L,; is
constructed using the classical assumptions and the classical procedure
described in Section 8.3, i.e. the unmodelled dynamic stochastic process
is assumed to have impulse response coefficients 7,, whose variance dies
at an exponential rate: £(n2) = A", with 8 and A determined by the
measured data. The parameters 5 and A and the variance o2 of the
white noise e(t) are estimated using the maximum likelihood technique
described in [47]. This estimation delivers:

B=19.96, A=0.002, 6> =0.006.

The number L in (8.4) is chosen equal to 15 as in [47]. These values
allow us to design a frequency domain uncertainty region £, made up of
ellipses at each frequency in the Nyquist plane. The desired probability
for the presence of G in L is here chosen equal to 0.9. This uncertainty
region is represented in Figure 9.1. Even though Go(e/*) seems at each
frequency to lie in the ellipses, it is to be noted that, at very few ones,
Go(e?) lies slightly outside. This phenomenon can be explained by
the nonlinear optimization that delivers the estimate of the stochastic
parameters, by the very few data used to design the uncertainty regions,
but also by the chosen probabilistic framework.

Control design. The second order Laguerre model G(z,[01,62]7) is
chosen as model G,,,q for control design. From this model G4, we
have designed a controller with a lead-lag filter:

5.2314 — 3.8667z 1
Cl) = —F g6
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Imaginary
| |

Figure 9.1: Ellipses of Ly at some frequencies, G(e/¥, [01,0,]") (dashed)
and Gy(e/*) (dashdot) in the Nyquist plane

With this controller, the designed closed-loop [C' Gj,0q] has a phase
margin of 85 degrees. The cut-off frequency w, is equal to 0.5. Before
applying this controller C(z) to the true system, we verify whether it
achieves satisfactory behaviour with all plants in an uncertainty region
Ly (and therefore also with the true system Gj).

Validation of C' for stability. We can use the procedure presented
in Section 9.1 to check whether C stabilizes all plants in £,;. For this
purpose, we construct the row vector M,  (z) defined in Theorem 9.1
and we compute the corresponding stability radius u(Mc,, (e/*)T~! (w))
at all frequencies. The stability radii are plotted in Figure 9.2. The
maximum over all frequencies in [0 7] is 0.4577 < 1; thus, we conclude
that C'(z) stabilizes all plants in £, (and therefore also the true system
Go). In other words, C' is validated for stability.

Validation of C for performance. In order to verify that C' gives
satisfactory performance with all plants in L£,, we choose the sensi-
tivity function Ty as performance indicator, and we compute, at each
frequency, the largest modulus t. ,(w,Th2) of Thy. This can be done
by computing Jy o (Le, C, Wi, W, w) using Theorem 9.3 with the par-
ticular weights W; = W, = diag(0,1). The worst case modulus of all
sensitivity functions over L, is represented in Figure 9.3. It is compared
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Figure 9.2: p(Mg,,(e’*)T 1 (w)) in [0 7]

with the sensitivity functions of the designed closed loop [C' G,04] and
that of the achieved closed loop [C' Gy]. From t. ,(w,T22), we can find
that the worst case static error (=tz_, (0, Ts2)) resulting from a constant
disturbance of unit amplitude is equal to 0.2889, whereas this static
error is 0.2438 in the designed closed-loop and 0.2267 in the achieved
closed loop. Using t ,(w,T52), we can also see that the bandwidth of
we = 0.5 in the designed closed-loop is almost preserved for all closed
loops with a plant in L, since tz ,(w,To2) is equal to 1 at w, ~ 0.33.
The difference between the resonance peak of the designed sensitivity
function (i.e. max, || T92(Gmod, C) ||= 1.1626) and the worst case rea-
sonance peak achieved by a plant in £, (i.e. max,tz,,(w,Th) = 2.45)
also remains small. Note that the actually achieved resonance peak (i.e.
max,, || To2(Go, C) ||) is equal to 1.3930. A last remark is to note that the
actually achieved sensitivity function is at very few frequencies slightly
above the template ¢, (w, Ts2). This is due to the fact that Go(e/%) lies
slightly outside L,; at those frequencies.

We may therefore conclude that the controller C' is validated for
performance since the difference between the nominal and worst case
performance level remains very small at every frequency. With such
stability and performance analysis results, one would confidently apply
the controller to the real system, assuming that the nominal performance
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10

Figure 9.3: t ,(w,Ty2) (solid) and modulus of the designed sensitivity
function Ths (G nod, C) (dashed) and actually achieved sensitivity func-
tion Th2(Go, C) (dashdot)

is judged to be satisfactory.

9.4 Conclusions

In this chapter, we have developed the robust stability and robust per-
formance analysis tools for the uncertainty region £. This uncertainty
region L is the uncertainty region obtained after a PE identification
procedure with biased model structure and with stochastic embedding
assumptions. The robust stability analysis tool for £ is a necessary and
sufficient condition for the stabilization of all plants in £ by a given
controller. The robust performance analysis tool is an LMI procedure
that exactly computes the worst case performance achieved by a given
controller over all plants in £. It is to be noted that we can compute
the worst case chordal distance at each frequency for the set L (see e.g.
our paper [10]). However, the maximum of these worst case chordal dis-
tances over the frequencies is not guaranteed to deliver the worst case
v-gap since we do not have a similar result for £ as Lemma 3.1 for D.
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Chapter 10

Conclusions

10.1 Contribution of this thesis

This thesis presents a framework to connect PE identification with Ro-
bust Control theory. The proposed framework has been initially pre-
sented for PE identification with an unbiased model structure, but has
been extended, in the last part of the thesis, to PE identification with a
biased model structure in the case where this model structure is linearly
parametrized.

First, we have shown that PE identification with unbiased model
structure yields an uncertainty region D containing the true system at
a certain probability level. We have developed a procedure to compute
such uncertainty region for open-loop identification, different types of
closed-loop identification methods, but also the MEM approach. This
uncertainty region takes the form of a set of transfer functions whose
parameter vector is constrained to lie in an ellipsoid. We have then de-
veloped robustness tools that are adapted to this uncertainty set. The
first robustness tool is a necessary and sufficient condition for the stabi-
lization of all plants in D by a given controller. The second robustness
tool is an LMI procedure to compute exactly the worst case performance
achieved by a controller over all plants in D. We have also introduced
a measure of the uncertainty set D that is directly connected to a set
of model-based controllers that stabilize all plants in this set D. This
measure is used to assess the quality of the uncertainty set with respect
to robustly stable control design. From that measure, we have also de-
duced guidelines for the design of the identification experiment, paving

145
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therefore the way to a new research field i.e. PFE identification for robust
control.

We have also developed results in order to represent D in the Nyquist
plane. Our results are restricted to linearly parametrized uncertainty re-
gions D. We have shown that the mapping between the parameter space
and the Nyquist plane is not bijective and that the image of D in the
Nyquist plane contains therefore more plants than D.

In the last part of this thesis, we have extended our framework to the
case of PE identification with a biased model structure, provided that
this model structure is linearly parametrized. For this purpose, we have
used the stochastic embedding assumptions. Our first contribution has
been to propose a proper way to design the uncertainty region deduced
from stochastic embedding in open-loop. We have then extended the
stochastic embedding technique to closed-loop identification and given a
general expression of the uncertainty set £ delivered by PE identification
with stochastic embedding assumptions that is valid as well in open-loop
as in closed-loop. This uncertainty region L takes the form of a set of
transfer functions parametrized by a transfer vector whose frequency
response is real and constrained to lie in an ellipse at each frequency.
We have then developed the robustness tools adapted to this uncertainty
set L i.e. a necessary and sufficient robust stability condition for £ and
an LMI procedure to compute the worst case performance in that set
L. It is to be noted that a technical problem has prevented us from
computing the worst case v-gap for L.

10.2 Open questions

Have we closed the gap between PE identification and Robust Control
theory. Of course, not | We have contributed to reduce it, but there
remain some open problems. Some are technical, the others are open
research fields.

10.2.1 Open technical problems

Let us begin by the problems we have just mentioned at the end of
Section 10.1. We still need to find a procedure to derive the worst
case v-gap in the uncertainty region £ obtained by stochatic embedding
from the worst case chordal distances at each frequency. The problem is
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here that a result in that sense exists for parametric uncertainty regions
(like D) but not for frequency domain uncertainty regions (like £). In
Chapter 4, we have also mentioned that we are currently investigating
the possibility to compute a measure for robust stability i (D) (or
pmin (L)) based on the necessary and sufficient result of that chapter
in order to improve the result of Chapter 3 that is based on sufficient
conditions only. Another and important technical problem is the ex-
tension to Multiple Inputs Multiple Outputs (MIMO) systems. Indeed,
the result of this thesis has been presented in the SISO context. While
many of the new concepts carry over to the MIMO case, the extension
of a number of our technical and computational results is by no means
trivial.

10.2.2 Open research fields

In Chapter 3, we have paved the way to a new research field i.e. PE iden-
tification for robust control. We have indeed characterized what quality
an uncertainty set deduced from PE identification must possess for it to
be tuned for robustly stable control design based on the model, and we
have drawn guidelines for the design of the identification experiment.
Plenty of work is still to be achieved in this direction. In Section 10.2.1,
we have already stated the problem that follows from the fact that our
result is based on a sufficient condition only. A lot of research has also
to be done in order to apply, in practice, the proposed guidelines for the
design of the identification experiment. Moreover, our result is restricted
to stability purposes. It will be interesting to seek a robust performance
measure for the uncertainty sets delivered by PE identification.

It would also be interesting to integrate our framework in one of the
iterative schemes [24, 90, 75] that alternate control design and identifi-
cation steps (for example on a real-life plant).

Another possible development may be a procedure to apply when one
(or both) controller validation procedure (stability and/or performance)
has failed with respect to an uncertainty set D'. We have then two
possibilities:

e We perform a new identification experiment yielding a new uncer-
tainty set Dy;s. When we have this new uncertainty set, we try

lor £
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again to validate the controller with respect to this new uncertainty
set Dbis-

e We design a new controller and we try to validate this new con-
troller with respect to the uncertainty set D.

In the first case, we are back in the problem of designing the validation
experiment in order to obtain an uncertainty set that is tuned for robust
control design. In the second case, we face the problem of designing a
robust controller with respect to the uncertainty sets D or L. For this
purpose, p-analysis can be investigated. However, this technique has
the drawback of not being guaranteed to converge.

Another possible extension is the extension of our framework to PE
identification with a biased model structure in the general case where the
model structure is not linearly parametrized. Finally, another possible
research field is the extension of the results of Chapter 7 to the general
case of nonlinearly parametrized uncertainty regions D.



Appendix A

Appendices to Chapter 7

A.1 Proof of Lemma 7.1

The inverse of the block matrix P can be written (see e.g. [92, page 22])

pl_ ( K1 Kia )
KL, Ko

where K1 = Pfll + PIEIPHA_IPIEPHI, Ky, = —Pﬁ1P12A_1, Koy =
A~ and A = Py, — PLP; ' Prs.

Using these notations and introducing the vector z = Ko,' Ky + 7,
we have the following equivalences:

T
< x > p! ( i > <l «— [ET(KH —K12K2_21K1T2)x+zTK222 <1

— TP lz+ 2T Kz <1 (A.1)
Using this last expression, we can now write that

1. if (z7 27)T € Uy, then 2T P;'z < 1. Indeed
z\ T
( - ) p! ( - ) 1= 2"P 'z < (1-2"Kypz) <1

2. if z7 P 'z < 1 then there exists # such that (z” 27)" € Uyz. In-

deed, take as Z, the vector Z such that z =0 (i.e. T = —K2_21K1T2x).
z
Then, < —K2_21K1TZ$ > € UIE
This completes the proof. O
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A.2 Proof of Theorem 7.2

We first prove that the inverse image of U, by the mapping (7.12) is
given by (7.20). This follows directly from:

t"'Prle < x <= yTT"P'Ty < x (A.2)

The volume () is thus the inverse image of U, since y has to satisfy the
right-hand side of (A.2) in order to have z in U,.

Tt follows from Ro = TT P, 'T € R¥* with T of rank n < k that
Rc has k£ —n null eigenvalues and that the corresponding eigenvectors
are in the null-space of the mapping T'.

Theorem 7.1 and the definition (7.19) of C), show that U, is included
in C,. Indeed, we know by Theorem 7.1 that each y in U, has an image
(i.e. Ty) in U,. Therefore, each y in U, lies in Cy, defined by (7.19). O
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PE identification with
stochastic embedding
assumptions in open loop

In this appendix, we give some details about the results of PE identi-
fication with stochastic embedding assumptions that are presented in
Proposition 8.1. The results presented below can be found in [47]. In
order to ease the notations, we will assume that Hy = 1. However, it is
not a requirement as shown in [47].

According to Proposition 8.1, a PE identification procedure with
Assuptions 8.1 delivers a model G(z,0) € M and an estimate P, of the
covariance matrix C, of the vector p parametrizing the error between

G and the identified model G(z, ).

B.1 Identification of a model in M

In order to identify a model G(z, ), we collect N input signals u(t) and
the N corresponding output signals y(¢) generated by (8.3). Just as was
done in Section 2.1.3, we can write the relation between the N signals
y(t) and the N signals u(t) as follows using the approximation (8.4):
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v @ v B
y() \ [ s\ [ w() ) e(1) \

v@ | [ 9@ g | YD |, | @ (B.1)
y(N) H(NV) B(N) ()

where ¢(t) € R™* (t = 1...N) is equal to A(z)u(t) and 9(t) € R*>*E
(t = 1...N) is defined by:

Ypt)=(ult—1) u(t-2) .. u(t—L)).

Since the predicted output of a system G(z,0) in M is given by §(¢,6) =
¢(t)0, the estimate # minimizing the criterion (2.3) is:

0= (0T®) a7y = QY. (B.2)

Let us now analyze the mean and the covariance of the estimate 0.
These values will be used in the sequel in order to express the matrix C,
defined in (8.6). The mathematical expectation £ 0 of 6 can be computed
as follows:

Y
g0 = &[(@T®) 1T (90, + Uy + E)]
= O+ QS(\IM]—F E)
= 6 (B.3)

The fact that the unmodeling is considered as the realization of a zero
mean stochastic process independent of the noise e(t) has as consequence
that the estimate 6 has a mean equal to #y. Using the same property,
the covariance matrix C of the estimate 6 can now be derived as follows:

C=E[0—00)0—6)"] = E(Q¥n+ E))(Q(¥n+ E))]
= Q(VC, T +o%IN)Q7, (B.4)
where o2 is the variance of the white noise e(t) and C, 2 ¢ (mmT) is,

according to Assumptions 8.1, equal to

Cy = diag(BX, BA?, ..., BAY) (B.5)
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B.2 Error between Gy(z) and G(z,0)

After having identified a model G(z, é), we can now express the error be-
tween the true system G and the identified model. For this purpose, let
us rewrite Go(z) and the model G(z,0) as follows using (8.2) and (8.4):

L
Gol) = Glato) + Yz " = (M) 1)) (%) (8o
n=1

6la) = () 1)) ( ) ®.7

The difference between these two transfer functions is thus equal to

/—,ﬁ%
Gala) - G0 = (A 1) (P 0) @y

If we assume that the impulse response coefficients 7, of Ga(z) are
Gaussian distributed, p € RFHXT hag (asymptotically) a Gaussian
distribution. Using (B.3) and the fact that £(n,) = 0, the mean of this
Gaussian distribution is zero. The covariance matrix €, can be deduced
from (B.4), (B.5), and the fact that

E(Bo — O)n"] = E[(-QUn — QE)"] = —QUC,
The covariance matrix C), is thus equal to:
o o— C -QUC,
P _qu,TQT 077 .

The matrix C, is unknown since the variance o2 of the white noise e(t)
and C;, are unknown. However, we can obtain estimates 62, B and \ of
the stochastic parameters 02,  and \ by using a maximum likelihood
technique [47]. As a consequence, we also obtain an estimate P, of C),:

P, = D —QYG, :
P —Cn\I/TQT Cﬂ
where C’n = diag(f?j\, BAZ, ..., BS\L) and Py is the estimate of the matrix
C given by
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