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Abstra
tThe main purpose of this thesis is to propose a new framework that
onne
ts Predi
tion Error Identi�
ation and Robust Control Theory.Predi
tion error identi�
ation using an unbiased model stru
ture deliv-ers an estimated model for the true plant and a 
on�den
e ellipsoid forits parameter ve
tor. This model information 
an be obtained eitherthrough dire
t identi�
ation of the system or through the identi�
a-tion of the model error, and the identi�
ation itself 
an be performedeither in open loop or in 
losed loop. The ellipsoidal parametri
 un
er-tainty region U 
ontains the parameters of the true system at a 
ertainprobability level that we 
an �x at, say, 95%; and de�nes an equivalentun
ertainty region D in the spa
e of transfer fun
tions. Su
h un
ertaintydes
ription is di�erent from the 
lassi
al frequen
y domain un
ertaintydes
riptions used in robust 
ontrol analysis and design. However, ourresults 
onne
t these two sets of tools in a 
oherent way. These results
over two distin
t aspe
ts.� The �rst aspe
t is \PE identi�
ation for robust 
ontrol". Wepresent a measure for the size of the un
ertainty set D, result-ing from predi
tion error identi�
ation, that is dire
tly 
onne
tedto the size of the set of model-based 
ontrollers that is guaranteedby the �-gap theory to stabilize all systems in this un
ertainty set.This allows us to establish that one un
ertainty set is better tunedfor robust 
ontrol design than another, leading to guidelines forthe design of the identi�
ation experiment.� The se
ond aspe
t is \
ontroller validation". We develop a ne
es-sary and suÆ
ient 
ondition for a spe
i�
 
ontroller to stabilize allsystems in D and we present an optimization problem that 
om-putes exa
tly the worst 
ase performan
e a
hieved by a 
ontrollerover all systems in an un
ertainty set D delivered by predi
tionerror identi�
ation. i



ii Abstra
tThis thesis presents also results (restri
ted to linearly parametrizedsystems) about the image of the un
ertainty set D in the Nyquist plane.The image in the Nyquist plane of su
h a set of plants is made up ofellipses at ea
h frequen
y. However, the 
onne
tion between di�erentfrequen
ies makes the mapping nontrivial. We show that the probabil-ity level linked to this image in the Nyquist plane is larger than that ofthe 
on�den
e region in the parameter spa
e. This is due to the fa
tthat the mapping between the parametri
 and frequen
y domain spa
esis not bije
tive.In the last part of this thesis, we extend our framework to the 
aseof biased model stru
tures, provided that the model stru
ture is linearlyparametrized. For this purpose, we use the sto
hasti
 embedding as-sumptions. First, we show that these assumptions allow one to 
onstru
ta frequen
y domain un
ertainty region L 
ontaining the true system ata 
ertain probability level, as well for open-loop as for 
losed-loop iden-ti�
ation. Then, we show that a ne
essary and suÆ
ient 
ondition 
anbe found for the stabilization of all plants in L by a given 
ontrollerand a pro
edure 
an be found to 
ompute the worst 
ase performan
ea
hieved by a 
ontroller over all plants in L.



Prefa
eThis thesis is divided in ten 
hapters:Chapter 1: Introdu
tionChapter 2: Un
ertainty region dedu
ed from PE identi�
a-tion with unbiased model stru
turesChapter 3: A measure of robust stability for the un
ertaintyregion DChapter 4: A ne
essary and suÆ
ient robust stability 
on-dition for DChapter 5: Worst 
ase performan
e in DChapter 6: Pra
ti
al simulation examplesChapter 7: Frequen
y domain image of a set of linearlyparametrized transfer fun
tionsChapter 8: Extension to biased model stru
tures usingsto
hasti
 embeddingChapter 9: Robustness analysis of LChapter 10: Con
lusionsThe material presented in Chapter 3 is to be published inX. Bombois, M. Gevers, and G. S
orletti. A measure ofrobust stability for a set of parametrized transfer fun
tions.To appear in IEEE Transa
tions on Automati
 Control, De-
ember 2000. iii



iv Prefa
eHowever, some results of this 
hapter (and of Chapter 2) 
an also befound in X. Bombois, M. Gevers, and G. S
orletti. Controller vali-dation based on an identi�ed model. In Pro
. IEEE Con-feren
e on De
ision and Control, pages 2816{2821, Phoenix,Arizona, 1999.M. Gevers, X. Bombois, B. Codrons, F. De Bruyne, andG. S
orletti. The role of experimental 
onditions in modelvalidation for 
ontrol. In A. Garulli, A. Tesi, and A. Vi
ino,editors, Robustness in Identi�
ation and Control - Pro
. ofSiena Workshop, July 1998, volume 245 of Le
ture Notes inControl and Information S
ien
es, pages 72{86. SpringerVerlag, 1999.The materials of Chapter 4 and Chapter 5 were (or are to be) publishedin X. Bombois, M. Gevers, G. S
orletti, and B.D.O. Anderson.Controller validation for stability and performan
e based onan un
ertainty region designed from an identi�ed model. InCD-ROM Pro
. IFAC Symposium on System Identi�
ation,paper WePM1-6, Santa Barbara, California, 2000.X. Bombois, M. Gevers, G. S
orletti, and B.D.O. Anderson.Robustness analysis tools for an un
ertainty set obtained bypredi
tion error identi�
ation. Revised version submittedto Automati
a, April 2000.The material in Chapter 6 is an adaptation of the examples published inB. Codrons, X. Bombois, M. Gevers, and G. S
orletti. Apra
ti
al appli
ation of re
ent results in model and 
on-troller validation to a ferrosili
on produ
tion pro
ess. InCD-ROM Pro
. 39th Conferen
e on De
ision and Control,paper WeP07-6, Sydney, Australia, 2000.



Prefa
e vM. Gevers, X. Bombois, B. Codrons, G. S
orletti, andB.D.O. Anderson. Model validation for 
ontrol and 
on-troller validation: a predi
tion error identi�
ation approa
h.Submitted to Automati
a.Note that this last paper summarizes Chapters 2 to 6. A preliminaryversion of this summary 
an be found inM. Gevers, X. Bombois, B. Codrons, F. De Bruyne, andG. S
orletti. Model validation for robust 
ontrol and 
on-troller validation in a predi
tion framework. In CD-ROMPro
. IFAC Symposium on System Identi�
ation, paperWeAM1-1, Santa Barbara, California, 2000.The material of Chapter 7 
an be found inX. Bombois, B.D.O. Anderson, M. Gevers. Frequen
y do-main image of a set of linearly parametrized transfer fun
-tions. Submitted to the European Control Conferen
e(ECC01), Porto, 2001.A preliminary version of several parts of Chapters 8 and 9 
an be foundin X. Bombois, M. Gevers, and G. S
orletti. Controller vali-dation for stability and performan
e based on a frequen
ydomain un
ertainty region obtained by sto
hasti
 embed-ding. In CD-ROM Pro
. 39th Conferen
e on De
ision andControl, paper TuM06-5, Sydney, Australia, 2000.
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Chapter 1Introdu
tion1.1 General obje
tiveSystem identi�
ation is the s
ienti�
 exer
i
e that 
onsists of determin-ing a mathemati
al model of an underlying real-life pro
ess, the so-
alledtrue system, based on observed data; and Predi
tion Error (PE) identi�-
ation is the method that is generally used to 
ompute this mathemati
almodel. One of the major appli
ations of the identi�ed model is the de-sign of a 
ontrol law for the true system. During the last years, mu
hattention has been paid to tune identi�
ation for 
ontrol design. Guide-lines have been established in order to design identi�
ation experimentsdelivering a model that is a

urate for 
ontrol design [38, 39, 75, 80, 2℄.Most often, these guidelines have led to the design of iteratives s
hemes[90, 3, 60, 69, 75, 80℄. A 
ommon feature of these s
hemes is that iter-ations are performed of model updates (by identi�
ation with the mostre
ent 
ontroller applied to the true system) and of model-based 
on-troller updates (the 
ontroller design being based on the most re
entmodel). However, during the iterative pro
edure, there is no guaranteethat the 
ontroller designed from the identi�ed model will form a stableloop and a
hieve suÆ
ient performan
e when this 
ontroller is appliedto the unknown true system.In order to derive this guarantee, the framework of Robustness The-ory, introdu
ed in the early 80's in [89, 31℄, is an elegant solution. Thisframework 
onsists of 
onsidering an un
ertainty region (i.e. a set ofsystems) that 
ontains the true system, and to verify the stability andperforman
e properties over all systems in this un
ertainty region. The1



2 Introdu
tionintrodu
tion of robustness prin
iples in identi�
ation for 
ontrol has ledto robusti�ed iterative s
hemes (see [81, 24℄) where, at ea
h iteration,in addition to the design of a 
ontroller, a model and an un
ertaintyregion around this model is identi�ed. The robusti�
ation requires thusa method to identify a model and an un
ertainty region, and robustnesstools to analyze this un
ertainty set. As a 
onsequen
e, we need frame-works that 
onne
t PE identi�
ation and robustness theory.In this thesis, we propose a new framework that 
onne
ts PE iden-ti�
ation and Robustness Theory. This framework 
onsists in a newmethod to design an un
ertainty region using the tools of PE identi�
a-tion, 
oupled with robustness tools that are adapted to this un
ertaintyregion. These robustness tools pertain both to the robusness analy-sis of a 
ontroller and the quality assessment of the un
ertainty region.Our framework is dedu
ed for PE identi�
ation with unbiased modelstru
ture. However, we show that our robustness analysis tools 
an beadapted to the 
ase of PE identi�
ation with biased model stru
ture.1.2 Histori
al frameworkThe history of the 
onsidered problem is already very long. Indeedthe estimation of the error between the identi�ed model and the truesystem that may be the root of un
ertainty region determination, isas old as PE identi�
ation itself. A reputable engineer should neverdeliver a produ
t without a statement about its pre
ision. However,the information about this error was 
lassi
ally presented in the time-domain via the 
ross-
orrelation between inputs and residuals. Thismodel error representation was thus a great distan
e from the 
lassi
alun
ertainty des
riptions used in mainstream Robustness Theory, namelyfrequen
y domain un
ertainty des
riptions. As a 
onsequen
e, a hugegap appeared at the end of the 80's between Robustness Theory and PEidenti�
ation as was eviden
ed in the 1992 Santa Barbara Workshop [76℄.This huge gap drove the Control Community to develop new te
hniques,di�erent from PE identi�
ation, in order to obtain, from measured data,a nominal model for 
ontrol design and an un
ertainty region 
ontainingthe true system. Several dire
tions have been pursued:� In set membership identi�
ation or the hard bound (or boundederror) framework, un
ertainty models have been derived under a
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tion 3variety of hard bound assumptions on the measurement noise andon the impulse reponse of the true system: see e.g. [46, 45, 66℄.� A se
ond dire
tion, initiated by Smith and Doyle [77℄, 
onsistsof starting with an a priori un
ertainty set resulting from priorassumptions on the true system and on the noise, and of then usingobserved input-output data to invalidate (and thus delete fromthis prior set) those models that are found to be in
onsistent withthese prior assumptions. Elaborations on this approa
h 
an befound in [70, 56, 19, 16℄. The 
on
ept of model invalidation, on thebasis of an observed in
ompatibility between a model (in
luding itsun
ertainty des
ription and its assumed hard-bound on the noise)and data, was extended to 
ontroller invalidation in [74℄.These new te
hniques aimed at produ
ing one of the standard linearfra
tional frequen
y domain un
ertainty regions that are generally usedin mainstream Robust Control Theory (su
h as additive, 
oprime fa
torun
ertainty regions). The drawba
ks of these te
hniques are neverthe-less the large amount of assumptions and, more fundamentally, the fa
tthat they are not based on the mainstream framework in System Iden-ti�
ation i.e. PE identi�
ation.Other approa
hes that are based on mainstream PE identi�
ation,have also been investigated to design un
ertainty regions from measureddata. They are interesting for our purpose sin
e they are a �rst stepin the dire
tion of the re
on
iliation between PE identi�
ation and Ro-bustness Theory. The �rst approa
h is the Model Error Model (MEM)approa
h proposed by L. Ljung in his plenary le
ture at CDC 1997 [61℄(see also [62℄). The stated goal of this approa
h was to repla
e thetime-domain information (i.e. the 
ross-
orrelation fun
tion betweeninputs and residuals) on the model error by frequen
y domain informa-tion, to suit the requirements of Robustness Theory. The key idea wasto estimate a model of the error between an a-priori given model andthe true system using a simple step of PE identi�
ation with unbiasedmodel stru
ture. By virtue of the unbiased model stru
ture, the erroris a varian
e error only, and an ellipsoid 
ontaining the \true parameterve
tor" at a 
ertain probability level 
an be 
onstru
ted using the es-timated 
ovarian
e matrix of the parameters. In [61, 62℄, this ellipsoidin parameter spa
e was then transformed into ellipses at ea
h frequen
yin the Nyquist plane, using a �rst order approximation of the mappingbetween the parameter spa
e and the Nyquist plane. These ellipses 
an
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tionbe 
olle
ted together to make up a frequen
y domain un
ertainty regionmade up of ellipses at ea
h frequen
y.Although the other approa
hes, Sto
hasti
 Embedding [48, 47℄ andthe methods presented in [49, 50, 87, 26℄, pre
eded the MEM approa
h,they 
an nevertheless be 
onsidered as the extension of the MEM ap-proa
h to the 
ase of (linearly parametrized) biased model stru
tures. InSto
hasti
 Embedding, the undermodeling is 
onsidered as the noise in
lassi
al PE identi�
ation i.e. as the realization of a zero mean sto
hasti
pro
ess. Consequently, just as in the MEM approa
h, the total error isa varian
e error only and ellipses at ea
h frequen
y in the Nyquist plane
an be 
onstru
ted and 
olle
ted together to make up a frequen
y do-main un
ertainty region. The �rst order approximation is here avoidedby only 
onsidering linearly parametrized model stru
tures. In the meth-ods presented in [49, 50℄ and in [87, 26℄, the error due to the noise isestimated in the same way as in the MEM and sto
hasti
 embeddingapproa
hes, but the error due to the undermodeling is estimated usingan assumption about the de
ay rate of the impulse response of the truesystem. These last two approa
hes 
an therefore be 
onsidered as mixedprobabilisti
-deterministi
 approa
hes. The un
ertainty region obtainedwith these methods 
an also be represented as an un
ertainty regionmade up of ellipses at ea
h frequen
y in the Nyquist plane.In all these approa
hes (MEM, sto
hasti
 embedding and mixedprobabilisti
-deterministi
 approa
hes), we obtain thus frequen
y do-main un
ertainty regions made up of ellipses at ea
h frequen
y in theNyquist plane.1.3 Contribution of this thesisIn this thesis, we will develop a framework that elegantly and eÆ
iently
onne
ts Robustness Theory and PE identi�
ation with unbiased modelstru
tures, starting from the results in [61, 62℄. This framework willbe extended for some of its aspe
ts to PE identi�
ation with (linearlyparametrized) biased model stru
tures using the sto
hasti
 embeddingassumptions.The starting point for the framework developed in this thesis is twoobservations we made about the MEM approa
h in [12℄. The �rst obser-



Introdu
tion 5vation is that the identi�
ation of an unbiased model error model is notthe only way to 
onstru
t un
ertainty regions using this paradigm: aneasier way is the dire
t identi�
ation of an unbiased model for the truesystem, and this in open-loop or in 
losed-loop. The se
ond observation,whi
h is more fundamental, is that the �rst order approximation yield-ing the ellipses in the Nyquist plane is a real drawba
k of the method,sin
e it introdu
es an error. In order to avoid this �rst order approxima-tion, we de
ided in [12℄ to 
onsider, as un
ertainty region, the set D ofparametrized transfer fun
tions 
orresponding to the ellipsoid in param-eter spa
e that is 
onstru
ted with the estimated 
ovarian
e matrix andthat 
ontains the true parameter ve
tor (at a 
ertain probability level).The �rst 
ontribution of our work is thus to present un
ertainty re-gions D 
onstru
ted with PE identi�
ation with unbiased model stru
-ture, without using any approximation or adding any further assump-tions. This un
ertainty region D 
ontains the true system at a 
ertainprobability level. We develop a pro
edure to 
ompute su
h un
ertaintyset for open-loop identi�
ation, di�erent types of 
losed-loop identi
a-tion methods, but also for the MEM approa
h, and we derive a generalexpression for this un
ertainty set valid for all these types of identi�
a-tion. This general expression takes the form of a set of parametrizedtransfer fun
tions whose (real) parameter ve
tor is 
onstrained to lie inan ellipsoid. The 
enter of this un
ertainty region is the \identi�ed"open-loop model.The un
ertainty region D is a \parametri
" un
ertainty region andis thus totally di�erent from the frequen
y domain un
ertainty regionsthat are generally used in mainstream Robust Control Theory. Due tothe huge amount of resear
h a

omplished in Robust Control Theory, alot of results have also been developed for parametri
 un
ertainty sets(see e.g. [34, 35, 53, 72, 7, 23, 4, 5℄). Some of these results will help us todevelop robustness tools adapted to the un
ertainty region D. However,manipulations of D and new results will be ne
essary to obtain theserobustness tools (for more details see Chapters 4 and 5).The se
ond 
ontribution of this thesis is therefore to furnish robust-ness tools that are adapted to the un
ertainty set D (i.e. without em-bedding it in a 
lassi
al un
ertainty set as we �rst made in [12℄). Wedevelop robust stability and robust performan
e analysis tools. The ro-
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tionbust stability analysis tool is a ne
essary and suÆ
ient 
ondition for thestabilization of all plants in D by a given 
ontroller. This 
ondition hasbeen dedu
ed from the result of [53, 72℄ that gives su
h a 
ondition foran un
ertainty set de�ned by a real ve
tor and expressed in the generalLFT (Linear Fra
tional Transformation) framework of robust analysis.Our 
ontribution is to re
ast the 
losed-loop 
onne
tions of all systemsin D with the 
onsidered 
ontroller as an LFT. The ne
essary and suf-�
ient robust stability 
ondition for D follows then from the result of[53, 72℄. The robust performan
e analysis tool is an LMI1-based opti-mization problem that we develop to 
ompute exa
tly the worst 
aseperforman
e a
hieved by a given 
ontroller over all plants in the un
er-tainty set D.A third 
ontribution is to develop preliminary steps in the dire
-tion of \PE identi�
ation for robust 
ontrol". This is a design problem,where our 
ontribution is to 
hara
terize what quality an un
ertaintyregion D must possess for it to be tuned for robustly stable 
ontrol de-sign. We have indeed established a measure of size of the un
ertaintyregion D that is dire
tly 
onne
ted to the size of a set of model-based
ontrollers that stabilize all systems in D. This measure of size is theworst 
ase �-gap between the nominal model and the plants in D and isan extention of the �-gap metri
 introdu
ed in [84℄. We show that thisworst 
ase �-gap 
an be 
omputed frequen
y-wise using an LMI-basedoptimization problem at ea
h frequen
y. We also show that the smalleris the worst 
ase �-gap between the model Gmod and the un
ertainty setD, the larger is the set of Gmod-based 
ontrollers that are guaranteedto stabilize all systems in D. The worst 
ase �-gap is thus an indi
atorof how well an un
ertainty set D is tuned for robustly stable 
ontrollerdesign based on Gmod and 
an therefore be used to assess the qualityof the un
ertainty set D obtained by a PE identi�
ation experiment.Our result also gives a meaning to the 
on
ept of PE identi�
ation forrobust 
ontrol: an identi�
ation experiment is \tuned for robust 
ontroldesign" if the worst 
ase �-gap for the un
ertainty set delivered by thisexperiment is small, be
ause it implies that, for that un
ertainty set, theset of robustly stabilizing 
ontrollers is large. In that sense, although itis restri
ted to stability purposes, our result is thus a �rst step in the di-re
tion of the establishment of a link between identi�
ation experimentdesign and 
ontroller robustness.1Linear Matrix Inequality



Introdu
tion 7In our pro
ess of understanding the properties of the parametri
un
ertainty region D, the representation (i.e. the image) of this un
er-tainty region in the Nyquist plane is an interesting feature. Sin
e theanalysis of the image of D for its general stru
ture is quite 
ompli
ated,we limit our analysis to un
ertainty sets where the plants are linearlyparametrized. The image in the Nyquist plane of su
h set of plants ismade up of ellipses at ea
h frequen
y. However, the 
onne
tion betweendi�erent frequen
ies makes the mapping nontrivial. We show that theimage in the Nyquist plane 
ontains more plants than the parametri
un
ertainty set. This is due to the fa
t that the mapping between theparametri
 and frequen
y domain spa
es is not bije
tive.The last part of this thesis 
onsists of extending our framework tothe 
ase of PE identi�
ation with a biased model stru
ture in the par-ti
ular 
ase where this model stru
ture is linearly parametrized. Forthis purpose, we use the sto
hasti
 embedding assumptions [48, 47℄.The 
hoi
e of the sto
hasti
 embedding method instead of the mixedprobabilisti
-deterministi
 approa
hes [50, 26℄ to extend our frameworkto biased model stru
tures is quite arbitrary. It is nevertheless impor-tant to note that the results we develop for the sto
hasti
 embeddingapproa
h also apply to the mixed probabilisti
-deterministi
 approa
hessin
e the un
ertainty regions delivered by all these methods are similar.The un
ertainty set dedu
ed from an open-loop PE identi�
ationpro
edure with sto
hasti
 embedding assumptions delivers an ellipsoidalun
ertainty set in the Nyquist plane (see Se
tion 1.2). In this thesis, weextend the sto
hasti
 embedding te
hnique to 
losed-loop identi�
ationand we give a general expression of the un
ertainty region L (valid forboth the open-loop and 
losed-loop 
ases) that exposes the stru
turalsimilarities of the un
ertainty set L with the un
ertainty region D. Thelast 
ontribution of this thesis is to develop the same robust stability andperforman
e analysis tools for L as was developed for D i.e. a ne
essaryand suÆ
ient 
ondition for the stabilization of all plants in L by a given
ontroller and an LMI-pro
edure to 
ompute exa
tly the worst 
ase per-forman
e a
hieved by a given 
ontroller over all plants in L. Both toolshave been derived from the stru
tural similarities between D and L.It is to be noted that a te
hni
al problem prevents us from 
omputing
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tionthe worst 
ase �-gap for the un
ertainty region L.1.4 The a
torsBefore giving the general outline of the thesis, let us present the di�erent\a
tors" that will intervene in this thesis.The true system G0. The true system is the pro
ess we want to
ontrol. It is assumed to be Single Input Single Output (SISO), LinearTime Invariant (LTI) and �nite dimensional.The un
ertainty region. The un
ertainty region is dedu
ed from aPE identi�
ation pro
edure on the true system. This is 
alled D if themodel stru
ture is assumed unbiased and L if the model stru
ture islinearly parametrized and possibly biased. The un
ertainty region is aset of systems that 
ontains the true system at a 
ertain probabilitylevel.The model Gmod. The model Gmod is the model 
hosen for 
ontroldesign. This model is generally the identi�ed model, 
enter of the un-
ertainty region D (or L). However, this is not a requirement: Gmodmay be given.The 
ontroller C. The 
ontroller C is the 
ontroller designed fromGmod that we want to apply to the unknown true system. In orderto apply C to G0 with 
on�den
e, we need to verify if the 
ontrollerC stabilizes and a
hieves suÆ
ient performan
e with all plants in theun
ertainty region D (or L) 
ontaining the true system G0.1.5 General outlineThis thesis is organized as follows:Chapter 2: Un
ertainty region dedu
ed from PE identi�
ationwith unbiased model stru
tures. This 
hapter re
alls the generalresults of PE identi�
ation with unbiased model stru
tures and presentsthe pro
edure that allows one to design un
ertainty sets D using a PEidenti�
ation pro
edure with an unbiased model stru
ture.
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tion 9Chapter 3: A measure of robust stability for the un
ertaintyregion D. This 
hapter introdu
es the worst 
ase �-gap, gives an LMIpro
edure to 
ompute it and shows why this measure 
an be 
onsideredas a robust stability measure of D.Chapter 4: A ne
essary and suÆ
ient robust stability 
onditionfor D. This 
hapter presents the ne
essary and suÆ
ient 
ondition forthe stabilization of all plants in D by a given 
ontroller.Chapter 5: Worst 
ase performan
e in D. This 
hapter de�nesthe notion of worst 
ase performan
e a
hieved by a given 
ontrollerover all the plants in the un
ertainty region D and gives the LMI-basedoptimization problem that 
omputes it exa
tly.Chapter 6: Pra
ti
al simulation examples. In this 
hapter, ourmethodology is applied to two realisti
 simulation examples: a 
exibletransmission system and a ferrosili
on produ
tion pro
ess.Chapter 7: Frequen
y domain image of a set of linearly parametrizedtransfer fun
tions. In this 
hapter, we analyze the image of the un-
ertainty region D in the Nyquist plane in the 
ase where the modelstru
ture is 
hosen linearly parametrized.Chapter 8: Extension to biased model stru
tures using sto
has-ti
 embedding. This 
hapter presents the sto
hasti
 embedding as-sumptions and gives the pro
edure to design the un
ertainty region Lin open-loop and in 
losed-loop.Chapter 9: Robustness analysis of L. In this 
hapter, we givethe robust stability and robust performan
e analysis tools for the un
er-tainty region L.Chapter 10: Con
lusions. This 
hapter 
on
ludes this thesis andproposes some possible further resear
h topi
s.
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Chapter 2Un
ertainty region dedu
edfrom Predi
tion ErrorIdenti�
ation with unbiasedmodel stru
tureAs said in the previous 
hapter, this work presents a framework that
onne
ts Predi
tion Error (PE) identi�
ation and Robust Control The-ory. For this purpose, in this 
hapter, it is shown that PE identi�
ationwith unbiased model stru
ture allows one to design an un
ertainty re-gion 
ontaining the true system at a 
ertain probability level, withoutany further assumptions.Predi
tion error identi�
ation delivers an estimated model for thetrue plant G0. If the parametri
 stru
ture for the model is suÆ
iently
omplex to represent the true system, then this model is asymptoti
allyunbiased, and the 
ovarian
e matrix of the parameter estimates allowsone to 
onstru
t a parametri
 un
ertainty region U 
ontaining the pa-rameters of the true system G0 at a 
ertain probability level that we
an �x at, say, 95 %. The un
ertainty region U in the parameter spa
ede�nes an equivalent un
ertainty region D in the spa
e of transfer fun
-tions with the identi�ed model as its 
enter. This un
ertainty region Dis thus de�ned as a set of parametrized transfer fun
tions, whose param-eter ve
tor is 
onstrained to lie in an ellipsoidal region in the parameterspa
e. 11



12 Un
ertainty region dedu
ed from PE identi�
ation...Chapter outline. In Se
tion 2.1, we �rst re
all the notion of unbiasedmodel stru
ture and the results of PE identi�
ation with su
h modelstru
ture. In Se
tion 2.2, we go through the di�erent types of identi�-
ation (open-loop, 
losed-loop, Model Error Model approa
h, ...) andshow the pro
edure to design an un
ertainty region with ea
h of thesetypes. In Se
tion 2.3, the general stru
ture of the un
ertainty regionsdelivered by PE identi�
ation is presented.2.1 PE identi�
ation with unbiased model stru
-tureIn this se
tion, we present the results related to PE identi�
ation withunbiased model stru
ture. More details 
an be e.g. found in [63℄. Beforepro
eeding to this, we �rst re
all the 
lassi
al results of PE identi�
ationwhatever model stru
ture we 
hoose to perform this identi�
ation.2.1.1 General results of PE identi�
ationPE identi�
ation 
onsists of sele
ting a parametrized model of an un-known system P0 in a 
ertain model stru
ture using time-domain data
olle
ted on this system P0. The rule by whi
h this sele
tion is performedusing the data, is a predi
tion error 
riterion i.e. the minimization ofthe errors between the outputs that are predi
ted using the parametrizedmodel and the a
tual outputs 
olle
ted on the system.The system P0 we want to identify 
an e.g. be a real-life plant ora 
losed-loop transfer fun
tion des
ribing a loop 
ontaing the real-lifeplant. In the sequel, we will always 
onsider systems P0 having thefollowing properties.Assumption 2.1 The system P0 that we want to identify is stable,single input single output (SISO), �nite dimensional and linear time-invariant (LTI), with a dis
rete-time rational input-output transfer fun
-tion P0(z): y(t) = P0(z)u(t) + v(t); (2.1)where u(t) is the input signal, y(t) the output signal and v(t) is an ad-ditive noise that is assumed to be generated by a white noise e(t) �lteredby a dis
rete-time rational transfer fun
tion �H0(z):v(t) = �H0(z)e(t):
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ertainty region dedu
ed from PE identi�
ation... 13The noise v(t) 
orrupting the output y(t) is thus assumed to be the real-ization of a zero mean sto
hasti
 pro
ess.In order to �nd a model for the system P0, we need1. input and output signals 
olle
ted on the system P02. a model stru
tureM for P0 from whi
h we will sele
t a model forP0 using the predi
tion error 
riterion and the 
olle
ted data.3. a model stru
ture for �H0 from whi
h we will sele
t a model for �H0using the same predi
tion error 
riterion and the same data.In order to 
olle
t data on P0, we apply the following pro
edure:De�nition 2.1 (data 
olle
ted on P0) Let us 
onsider the system P0satisfying Assumption 2.1. We apply a known sequen
e UN = fu(t)jt =1:::Ng of N input data to P0. This input sequen
e is assumed persistentlyex
iting (see [63℄). We 
olle
t the 
orresponding noisy output sequen
eYN = fy(t)jt = 1:::Ng generated by (2.1).A model stru
ture is a set of parametrized transfer fun
tions. Let usde�ne the model stru
ture for P0 as follows:M = fP (�) j � 2 Rk�1g; (2.2)The ve
tor � is 
alled the parameter ve
tor. As we will never use themodel of �H0, we will not de�ne the model stru
ture for �H0 formally.However, we must always keep in mind that a PE identi�
ation pro
e-dure pertains to the identi�
ation of both a model for P0 and a modelof �H0. Let us now summarize the general results of PE identi�
ation inthe following proposition.Proposition 2.1 ([63℄) Let us 
onsider the system P0 satisfying As-sumption 2.1 and the sequen
es UN and YN 
olle
ted on P0 as shownin De�nition 2.1. Let us also 
onsider a model stru
ture M for P0 asde�ned in (2.2). A PE identi�
ation pro
edure with UN , YN and M de-livers an identi�ed parameter ve
tor �̂ de�ning a model P (�̂) 2M. Theidenti�ed parameter ve
tor �̂ is the parameter ve
tor that minimizes thesum of the square of the predi
ted errors i.e. the di�eren
es between the



14 Un
ertainty region dedu
ed from PE identi�
ation...predi
ted outputs ŷ(t; �) 1 and the a
tual outputs y(t):�̂ �= arg min� NXt=1(ŷ(t; �)� y(t))2 (2.3)Moreover, �̂ is asymptoti
ally a random ve
tor with gaussian distribu-tion, mean �� and 
ovarian
e C:�̂ � AsN (��; C) (2.4)where �� 2 Rk�1 is an unknown parameter ve
tor and C 2 Rk�k isan unknown symmetri
 positive de�nite matrix. Besides an identi�edparameter ve
tor �̂, the PE identi�
ation pro
edure also delivers an es-timate P� of the 
ovarian
e matrix C of �̂.2.1.2 PE identi�
ation with unbiased model stru
turePE identi�
ation with unbiased model stru
ture is the parti
ular 
ase ofPE identi�
ation where the model stru
ture for P0 is 
hosen unbiased.A model stru
ture M is said unbiased if the system P0 lies inM:De�nition 2.2 (Unbiased model stru
ture for P0) Let us 
onsidera system P0 satisfying Assumption 2.1 and a model stru
ture for P0 asde�ned in (2.2). The model stru
ture M is said unbiased for P0 if thereexists a parameter ve
tor �0 2 Rk�1 su
h thatP0 = P (�0) 2MDe�nition 2.2 and Proposition 2.1 show that a PE identi�
ation pro
e-dure with an unbiased model stru
ture delivers a full order model of thetrue system.When an unbiased model stru
ture is used, the only error you 
anobtain on the estimation of P0 is the 
ovarian
e error due to the (zeromean) noise v(t) 
orrupting the output of P0. The mean of the estimatedparameter ve
tor �̂ is 
onsequently the true parameter ve
tor �0. Thisis summarized in the following proposition.1If we de�ne the model stru
ture for �H0 as M �H = f �H(�) j � 2 Rk�1g, then thepredi
ted outputs ŷ(t; �) is equal to �H�1(�)P (�)u(t) + (1�H�1(�))y(t).



Un
ertainty region dedu
ed from PE identi�
ation... 15Proposition 2.2 ([63℄) Let us 
onsider that the PE identi�
ation pro-
edure des
ribed in Proposition 2.1 is performed with an unbiased modelstru
ture M for P0 = P (�0) as de�ned in De�nition 2.2 2. Then, theidenti�ed parameter ve
tor �̂ de�nes an unbiased model P (�̂) 2 M andhas the property of being asymptoti
ally a random ve
tor with gaussiandistribution, mean �0 and 
ovarian
e C:�̂ � AsN (�0; C) (2.5)where C 2 Rk�k is an unknown symmetri
 positive de�nite matrix.As for general model stru
tures, the PE identi�
ation pro
edure withunbiased model stru
ture also delivers an estimate P� of the 
ovarian
ematrix C of �̂.Although the Gaussian distribution property of the identi�ed param-eter ve
tor is an asymptoti
 property (i.e. a property obtained whenN ! 1), we will use this property in the sequel for a �nite but suf-�
iently large number N of data. This widespread approximation inStatisti
s Theory has been proved a

urate in [63℄. Using this approx-imation, the results presented in Proposition 2.2 allows one to de�ne
on�den
e ellipsoids 
entered at the identi�ed parameter ve
tor �̂ and
ontaining the unknown parameter ve
tor with a 
ertain probabilitylevel.Proposition 2.3 ([63℄) Let us 
onsider the system P0 = P (�0) satisfy-ing Assumption 2.1. Let us also 
onsider the identi�ed parameter ve
tor�̂ and the estimate P� of the 
ovarian
e matrix of �̂ as delivered by aPE identi�
ation pro
edure performed on P0 using a suÆ
iently largenumber N of input-output data and an unbiased model stru
ture M (seeProposition 2.2). We have then that the ellipsoid U of size � i.e.U = f� j (� � �̂)TP�1� (� � �̂) < �g (2.6)
ontains the true parameter ve
tor �0 with a probability �(k; �):�(k; �) = Pr(�0 2 U) = Pr(�2(k) < �);where �2(k) is the 
hi-square probability density fun
tion with k degreesof freedom.2The model stru
ture for �H0 is also assumed unbiased. However, it is not arequirement in the 
ase where the model stru
tures for P0 and H0 are independentlyparametrized and the signals u(t) and v(t) are not 
orrelated.



16 Un
ertainty region dedu
ed from PE identi�
ation...Proof. This proposition is a dire
t 
onsequen
e of the fa
t that N hasbeen 
hosen suÆ
iently large and of Proposition 2.2. �Remarks.� The use of the 
hi-square probability distribution with k degreesof freedom to de�ne the probability density linked to U is infa
t an approximation. Indeed, sin
e P� is only an estimate ofthe 
ovarian
e matrix C obtained with N experimental data, theprobability density fun
tion linked to U is a fun
tion of the F-distribution F (k;N � k) : the probability of the presen
e of �0 inU is Pr(F (k;N � k) < �=k). Nevertheless, sin
e N will generallybe large, we have that Pr(F (k;N � k) < �=k) � Pr(�2(k) < �).� The probability level �(k; �) 
an be 
hosen by the designer.� If you 
hoose a probability level �(k; �) = 0:95, it a
tually meansthat we have a probability of 95 % that the realisation of the noisev(t) in the 
onsidered experiment has generated a 
ovarian
e erroron the estimate �̂ su
h that the true parameter ve
tor �0 lies inthe 
on�den
e ellipsoid U .2.1.3 PE identi�
ation with unbiased ARX model stru
-turesIn the previous subse
tion, we have brie
y presented the general resultsof PE identi�
ation with unbiased model stru
tures. These results aresummarized in Proposition 2.2. In order to illustrate these results, wewill present, in this subse
tion, the mathemati
al details of a PE iden-ti�
ation pro
edure with unbiased model stru
ture when the system P0has an ARX stru
ture. A system P0 is said to have an ARX stru
tureif the relation between its input u(t) and its output y(t) is given byA(�1;0)y(t) = B(�2;0)u(t) + e(t): (2.7)The ve
tors �1;0 2 Rna�1 and �2;0 2 Rnb�1 are unknown parameterve
tors. The signal e(t) is a white noise of varian
e �2. B(�2;0) is apolynomial in z�1 with a 
ertain delay that is here assumed equal to 1:B(�2;0) = � z�1 z�2 ::: z�nb � �2;0;and A(�1;0) is a moni
 polynomial in z�1 given by
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ertainty region dedu
ed from PE identi�
ation... 17A(�1;0) = 1 + � z�1 z�2 ::: z�na � �1;0:In order to perform a PE identi�
ation pro
edure with unbiasedmodel stru
ture for the system P0 as de�ned in (2.7), let us measureN input data u(t) and the 
orresponding N output data y(t) generatedby (2.7) and let us de�ne an unbiased model stru
ture as well for thesystem P0 = B(�2;0)=A(�1;0) as for the noise model �H0 = 1=A(�1;0):MARX = �P (�) = B(�2)A(�1) and �H(�) = 1A(�1) j � = � �1�2 � 2 R(na+nb)�1�(2.8)The identi�
ation of a model fromMARX is equivalent to the iden-ti�
ation of a parameter ve
tor �̂ using the 
riterion presented in (2.3).In order to pro
eed to the determination of �̂, let us �rst introdu
ethe following notations about the a
tual outputs y(t) and the predi
tedoutputs ŷ(t; �) that are both used in (2.3):y(t) = �(t) �0z }| {� �1;0�2;0 �+e(t) (2.9)Yz }| {0BB� y(1)y(2):y(N) 1CCA = �z }| {0BB� �(1)�(2):�(N) 1CCA �0 + Ez }| {0BB� e(1)e(2):e(N) 1CCA; (2.10)where �(t) = � �y(t� 1) ::: �y(t� na) u(t� 1) ::: u(t� nb) � :The predi
ted output ŷ(t; �) for a system inMARX is given by ŷ(t; �) =�(t)� [63℄. As for the a
tuals outputs, let us 
onstru
t a ve
tor with theN predi
ted outputs: Ŷ (�)z }| {0BB� ŷ(1; �)ŷ(2; �):ŷ(N; �) 1CCA = �� (2.11)



18 Un
ertainty region dedu
ed from PE identi�
ation...We are now able to �nd the estimate �̂ that minimizes the predi
-tion error 
riterion presented in (2.3). Indeed, using expressions (2.10)and (2.11), we 
an rewrite that 
riterion as follows:�̂ = arg min� [(�� � Y )T (�� � Y )℄:It yields: �̂ = (�T�)�1�TY = QY (2.12)Let us now analyze the mean and the 
ovarian
e of the estimate �̂.The mathemati
al expe
tation E �̂ of �̂ 
an be 
omputed as follows:E �̂ = E [(�T�)�1�T Yz }| {(��0 +E)℄= �0 + (�T�)�1�TE(E)= �0 (2.13)We obtain the result of Proposition 2.2 that tells us that the mean ofthe estimate �̂ is equal to �0 in the 
ase of unbiased model stru
tures.Let us now 
ompute the 
ovarian
e matrix C of �̂:C = E [(�̂ � �0)(�̂ � �0)T ℄ = E [(QE)(QE)T ℄= �2QQT (2.14)The matrix C is unknown sin
e the varian
e �2 of the white noise e(t)is unknown. However, we 
an obtain an estimate �̂2 of �2 by using amaximum likelihood te
hnique [63℄. As a 
onsequen
e, we also obtainan estimate P� of C: P� = �̂2QQT (2.15)Remark. In this subse
tion, we have analyzed the 
ase of ARX modelstru
tures. It is to be noted that, if the 
hosen model stru
ture is notlinear in � (su
h as in the ARX model stru
ture), the determination of�̂ and of P� require numeri
al optimization routines (see e.g. [63℄).



Un
ertainty region dedu
ed from PE identi�
ation... 192.2 Design of un
ertainty regions using PE iden-ti�
ationIn the previous se
tion, we have re
alled the important results relatedto PE identi�
ation with unbiased model stru
ture. In this se
tion, wewill show that we 
an design an un
ertainty region 
ontaining the real-life plant G0, the so-
alled true system G0 using a PE identi�
ationpro
edure with unbiased model stru
ture, and this without adding anyfurther assumptions on the true system G0 than the 
lassi
al assump-tions required by PE identi�
ation. We will 
onsider di�erent types ofPE identi�
ation, namely:� open-loop identi�
ation [63℄,� model error model identi�
ation [62, 64, 43, 42℄,� dire
t 
losed-loop identi�
ation [78℄,� indire
t 
losed-loop identi�
ation [78℄,� Dual-Youla 
losed-loop identi�
ation [52, 51, 75, 27℄.Open-loop identi�
ation is the 
lassi
al way to perform identi�
ation.However, in many industrial appli
ations, due to unstable behaviour ofthe plant, experimental data 
an only be obtained in 
losed loop anda 
losed-loop identi�
ation must be performed. Moreover, the re
entresults on identi�
ation for 
ontrol have promoted the use of 
losed-loopidenti�
ation for produ
ing models that are better suited for 
ontroldesign (see e.g. [38, 39℄). The properties of the di�erent types of 
losed-loop identi�
ation are 
ompared in e.g. [28℄. The model error modelapproa
h has been introdu
ed by L. Ljung in order to validate an a-priori given model Gmod and 
onsists in the identi�
ation of a model forthe di�eren
e between the true system and the model Gmod. Open-loopand 
losed-loop identi�
ation 
an be 
onsidered for this approa
h.We will show that all these types of identi�
ation lead to un
ertaintyregions that have the same general stru
ture. Before pro
eeding to this,we will �rst present the assumptions we made about the true systemG0. These assumptions are the 
lassi
al assumptions required by PEidenti�
ation with unbiased model stru
ture.



20 Un
ertainty region dedu
ed from PE identi�
ation...2.2.1 Assumptions on the true system G0In the sequel, we will assume that the true system G0 is SISO andLTI. Moreover, we assume that G0 
an be des
ribed by a dis
rete-timerational transfer fun
tion G0(z) having the following general formG0(z) = G(z; �0) = z�d(b0 + b1z�1 + :::+ bmz�m)1 + a1z�1 + :::+ anz�n = Z2(z)�01 + Z1(z)�0 ;(2.16)where� d is the delay;� �T0 = [a1 ::: an b0 ::: bm℄ 2 Rq�1; q �= (n+m+ 1);� Z1(z) = [z�1 z�2 ::: z�n 0 ::: 0℄ is a row ve
tor of size q;� Z2(z) = z�d [0 ::: 0 1 z�1 z�2 ::: z�m℄ is a row ve
tor of size q.We will further assume that the input-output relation for G0 is given byy(t) = G0u(t) + v(t); (2.17)where v(t) is additive noise modelled by v(t) = H0(z)e(t). The transferfun
tion H0(z) is a dis
rete-time rational transfer fun
tion and e(t) is awhite noise of varian
e �2.These assumptions are equivalent to the assumptions we made aboutthe system P0 in the previous se
tion. The only di�eren
e is that we donot require here that the true system G0 is stable. Indeed, this stabilityis not needed for the 
losed-loop identi�
ation pro
edures. However, thestability of G0 is required in order to perform an open-loop identi�
ationor an identi�
ation using the model error model approa
h in open-loop.2.2.2 Open-loop PE identi�
ationLet us 
onsider the true system G0 presented in Se
tion 2.2.1. Here, wefurther assume that G0 is stable. The true system G0 satis�es there-fore Assumptions 2.1, and we may therefore perform a PE identi�
ationwith unbiased model stru
ture with this true system. Using (2.16), anunbiased model stru
ture for G0 is given byMol = �G(�) j G(�) = Z2�1 + Z1�� ; (2.18)



Un
ertainty region dedu
ed from PE identi�
ation... 21where � 2 Rq�1. If we know 
olle
t N input data u(t) and outputdata y(t) on the true system G0, we have all the elements to performthe identi�
ation. As stated in Proposition 2.2, this identi�
ation yieldsa model G(�̂) 2 Mol and an estimate of the 
ovarian
e matrix P� of�̂. Using now Proposition 2.3, the true parameter ve
tor �0 lies withprobability �(q; �) in the ellipsoidal un
ertainty regionUol = f� j (� � �̂)TP�1� (� � �̂) < �g (2.19)This parametri
 un
ertainty region Uol de�nes a 
orresponding un
er-tainty region in the spa
e of transfer fun
tions whi
h we denote Dol:Dol = �G(�) j G(�) = Z2�1 + Z1� and � 2 Uol� (2.20)Properties of Dol.G0 2 Dol with probability �(q; �)We have thus de�ned an un
ertainty region Dol 
entered at the iden-ti�ed model G(�̂) and 
ontaining the true sytem G0 with probability�(q; �) (e.g. � = 0:95).2.2.3 Model Error Model Approa
hIn this se
tion, we will show that we 
an also obtain an un
ertainty re-gion 
ontaining the true system at a 
ertain probability level using theModel Error Model (MEM) approa
h. This approa
h was introdu
edby Lennart Ljung in [62℄ for the open-loop 
ase and was extended to the
losed-loop 
ase in [43℄. We will here only 
onsider the open-loop 
asein order to remain 
on
ise. However, we 
an also dedu
e an un
ertaintyregion from MEM in 
losed-loop as proved in [43, 42℄. In the MEMapproa
h, we 
onsider a stable true system G0 satisfying the assump-tions presented in Se
tion 2.2.1 and an a-priori given model Gmod forthis true system3. This approa
h 
onsists of identifying a model for theerror between the given model Gmod and the true system G0. A modelfor G0 is then dedu
ed by adding Gmod to the identi�ed \error model".Just as for the open-loop identi
ation 
ase presented in the previoussubse
tion, we 
olle
t on the true system G0 two sequen
es UN and YN3This model Gmod is typi
ally the model we want to use for 
ontrol design.



22 Un
ertainty region dedu
ed from PE identi�
ation...
ontaining N inputs u(t) and the 
orresponding outputs y(t), respe
-tively. Using these data, we 
ompute the N residuals "(t):"(t) = y(t)�Gmodu(t): (2.21)We have then the following relation between the inputs u(t) and theresiduals "(t): "(t) = ÆG0z }| {(G0 �Gmod)u(t) +H0e(t) (2.22)As the system ÆG0 satis�es Assumptions 2.1, we 
an perform a PEidenti�
ation with unbiased model stru
ture for ÆG0. An unbiased modelstru
ture for ÆG0 is a fun
tion of the given model Gmod. Let us thereforedenote it in the following generi
 form:Mmem = � ~G(�) j ~G(�) = Z3�1 + Z4�� ; (2.23)where we have that � is a real ve
tor of size, say, l and that Z3(z)and Z4(z) are row ve
tors of size l 
onstru
ted in the same way as Z1and Z2 in (2.16) and therefore 
ontaining only delays and zeros. AsMmem is an unbiased model stru
ture for ÆG0, there exists a ve
tor�0 su
h that ÆG0 = ~G(�0) 2 Mmem. As stated in Proposition 2.2,a PE identi�
ation pro
edure with UN , EN = f"(t)jt = 1:::Ng andMmem yields an unbiased model ~G(�̂) of ÆG0 and an estimate P� of the
ovarian
e matrix of �̂. Using now Proposition 2.3, the true parameterve
tor �0 lies with probability �(l; �) in the ellipsoidal un
ertainty regionUmem = f� j (� � �̂)TP�1� (� � �̂) < �g (2.24)From this set Umem, we 
an dedu
e the set of 
orresponding plants G(�)de�ned as:Dmem = nG(�) j G(�) = Gmod + ~G(�) and � 2 Umemo (2.25)The notation G(�) used in (2.25) denotes the rational transfer fun
tionmodel whose 
oeÆ
ients are uniquely determined from � by the mappingG(�) = Gmod+ ~G(�). The nominal model for the true system G0 derivedfrom ~G(�̂) is G(�̂). It is important to note that, using the expressionof ~G(�) in (2.23), the un
ertainty region Dmem 
an also be rewritten asfollows:



Un
ertainty region dedu
ed from PE identi�
ation... 23Dmem = �G(�) j G(�) = Gmod + Z5�1 + Z6� and � 2 Umem� (2.26)with Z5 = Z3 + Z4Gmod and Z6 = Z4Properties of Umem and Dmem.�0 2 Umem with probability �(l; �)G0 = G(�0) 2 Dmem with probability �(l; �)Just as was done for open-loop identi�
ation, we have thus de�ned anun
ertainty region Dmem that is 
entered at the modelG(�̂) derived fromthe identi�ed ~G(�̂) and that 
ontains the true system G0 at a 
ertainprobability level.2.2.4 Closed-loop identi�
ationLet us 
onsider again the true system G0 presented in Se
tion 2.2.1. Inorder to perform the identi�
ation in 
losed-loop, we 
onne
t the truesystem with a stabilizing 
ontroller K as shown in Figure 2.1.
GoK

v(t)r2(t)

r1(t)
y(t)u(t)- +

+

+

++

Figure 2.1: Closed-loop 
onne
tion of G0 and the 
ontroller KUsing Figure 2.1, we 
an write the following relations between thesignals present in the 
losed loop [K G0℄:� y(t)u(t) � = T (G0;K)z }| { G0K1+G0K G01+G0KK1+G0K 11+G0K !� r1(t)r2(t) �+� 11+G0K�K1+G0K � v(t) (2.27)



24 Un
ertainty region dedu
ed from PE identi�
ation...y(t) = G0u(t) + v(t) (2.28)Di�erent types of PE identi�
ation 
an be performed using data
olle
ted on the 
losed loop [K G0℄. We will here distinguish dire
t,indire
t and Dual-Youla 
losed-loop identi�
ations and show that un-
ertainty regions 
an be dedu
ed from these three types of 
losed-loopidenti�
ation.2.2.4.1 Dire
t 
losed-loop identi�
ationThe obje
tive of dire
t 
losed-loop identi�
ation is to identify a model ofthe true system using input signals u(t) and output signals y(t) 
olle
tedon the 
losed loop [K G0℄. We will therefore apply a sequen
e of Nsignals r1(t) (or r2(t)) to the 
losed-loop and 
olle
t the 
orrespondingsequen
es of data UN and YN :UN = fu(t)jt = 1:::Ng YN = fy(t)jt = 1:::NgThe pro
edure of identi�
ation then follows the same pro
edure as foropen-loop identi�
ation4. The un
ertainty region dedu
ed from dire
t
losed-loop identi�
ation has therefore the same form as the un
ertaintyregion Dol given in (2.20).2.2.4.2 Indire
t 
losed-loop identi�
ationThe obje
tive of indire
t 
losed-loop identi�
ation is to identify a modelof one of the four 
losed-loop transfer fun
tions des
ribing the loop[K G0℄. These four \true" 
losed-loop transfer fun
tions are the en-tries of the matrix T (G0;K) de�ned in (2.27) i.e.T 10 = G0K1+G0K T 20 = G01+G0K T 30 = K1+G0K T 40 = 11+G0K (2.29)The model for G0 is then 
omputed from the estimate of any one ofthese four transfer fun
tions by inversion of the mapping (2.29), usingknowledge of the 
ontroller K. The sele
tion of one of those trans-fer fun
tions for identi�
ation is linked to the available signals and thestru
ture of the 
ontroller K. Indeed, it is proved in [21℄ that the pres-en
e of unstable (or unit-
ir
le) poles or zeros in K imposes restri
tions4It is nevertheless to be noted that an unbiased model stru
ture for the noisemodel is here required.



Un
ertainty region dedu
ed from PE identi�
ation... 25on the subset of these transfer fun
tions that 
an be identi�ed.In the sequel, we show how we 
an 
onstru
t an un
ertainty regionDi
l 
ontaining the true system in the 
ase where the �rst 
losed-looptransfer fun
tion T 10 is estimated. An un
ertainty region Di
l 
an bederived similarly for the other 
ases (see e.g. [13℄ for the identi�
ationof T 30 ).Let us therefore apply a sequen
e of N data r1(t) to the 
losed-loop[K G0℄ and 
olle
t the 
orresponding sequen
e of data y(t). We havethe following relations between r1(t) and y(t):y(t) = T 10z }| {G0K1 +G0K r1(t) + 11 +G0Kv(t) (2.30)Sin
e the transfer fun
tion T 10 satis�es Assumptions 2.1, the N datar1(t) and y(t) 
an be used to identify a full-order model for T 10 . For thispurpose, we need to de�ne an unbiased model stru
ture for T 10 . Sin
ethe stru
ture of T 10 is a fun
tion of the 
ontroller K, let us de�ne it inthe following generi
 wayMi
l = �T (�) j T (�) = Z7�1 + Z8�� ; (2.31)where we have that � is a real ve
tor of size, say, f and that Z3(z)and Z4(z) are row ve
tors of size f 
onstru
ted in the same way asZ1 and Z2 in (2.16) and therefore 
ontaining only delays and zeros.As Mi
l is an unbiased model stru
ture for T 10 , there exists a ve
tor�0 su
h that T 10 = T (�0) 2 Mi
l. As stated in Proposition 2.2, a PEidenti�
ation pro
edure with the N data r1(t), theN 
orresponding datay(t) and Mi
l yields an unbiased model T (�̂) of T 10 and an estimate P�of the 
ovarian
e matrix of �̂. Using now Proposition 2.3, we 
an de�nean ellipsoidal parametri
 un
ertainty region Ui
l that 
ontains the trueparameter ve
tor �0 at the probability level �(f; �):Ui
l = f� j (� � �̂)TP�1� (� � �̂) < �g (2.32)From this set Ui
l, we 
an dedu
e the set of 
orresponding open-loopplants G(�) de�ned as:



26 Un
ertainty region dedu
ed from PE identi�
ation...Di
l = �G(�) j G(�) = T (�)K(1� T (�)) and � 2 Ui
l� (2.33)The notation G(�) used in (2.33) denotes the rational transfer fun
tionmodel whose 
oeÆ
ients are uniquely determined from � by the mappingG(�) = T (�)K(1� T (�)) : (2.34)The nominal open-loop model derived from T (�̂) is G(�̂). It is importantto note that, using the expression of T (�) in (2.31), the un
ertaintyregion Di
l 
an also be rewritten as follows:Di
l = �G(�) j G(�) = Z9�1 + Z10� and � 2 Ui
l� (2.35)with Z9 = Z7=K and Z10 = Z8 � Z7Properties of Ui
l and Di
l.�0 2 Ui
l with probability �(f; �)G0 = G(�0) 2 Di
l with probability �(f; �)We have thus de�ned an un
ertainty region Di
l that is 
entered at theopen-loop model G(�̂) derived from the identifed T (�̂) and that 
ontainsthe true system G0 at a 
ertain probability level.2.2.4.3 Dual-Youla 
losed-loop identi�
ationThe so-
alled Youla parametrization gives the parametrization of all
ontrollers stabilizing a plant (see [29℄). For identi�
ation purpose, thisresult has been extended to the parametrization of all plants stabilizedby a 
ontroller [52, 51℄. This result is re
alled in Proposition 2.4, but be-forehand, we give the following de�nition that is used in Proposition 2.4.De�nition 2.3 ([83℄) Let us 
onsider a transfer fun
tion G. The pairfN;Dg is a 
oprime fa
torization of G if
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ed from PE identi�
ation... 27� N and D are stable tranfer fun
tions;� G = ND ;� there exists stable transfer fun
tions X and Y su
h that XN +Y D = 1Proposition 2.4 ([83℄) Let us 
onsider a plant G having a 
oprimefa
torization fNG;DGg and a 
ontroller C having a 
oprime fa
toriza-tion fNC ;DCg. Let us also assume that C stabilizes G. Then, the setS of all (LTI and �nite dimensional) plants stabilized by C is given by:S = fGin j Gin = NG +DCRDG �NCR with R 2 RH1gThe parametrization presented in Proposition 2.4 
an be appliedto the loop [K G0℄ presented in Figure 2.1. Indeed, 
onsider a giveninitial system Gx that is stabilized by K. Using Proposition 2.4, thetrue system G0 (also stabilized by K) 
an be represented in the Youlaparametrization for a stable transfer fun
tion R0:G0 = Nx +DKR0Dx �NKR0 ; (2.36)where fNx;Dxg and fNK ;DKg are 
oprime fa
tors of Gx andK, respe
-tively 5. The obje
tive in Dual-Youla 
losed-loop identi�
ation [52, 51℄is to identify the Youla parameter R0 of the true system using data 
ol-le
ted on the 
losed-loop [K G0℄. A model for the true system is thendedu
ed from the identi�ed Youla parameter.In order to perform this identi�
ation, a sequen
e of N data r1(t) isapplied to [K G0℄ and the 
orresponding data u(t) and y(t) are 
olle
ted.Using the signals u(t) and y(t), we 
an 
ompute the following auxiliarysignals x(t) and z(t):x(t) = (Dx +KNx)�1(u(t) +Ky(t)) (2.37)z(t) = (DK +GxNK)�1(y(t)�Gxu(t)): (2.38)These auxiliary signals x(t) and z(t) are su
h thatz(t) = R0x(t) +H0(DK(1 +KG0))�1v(t): (2.39)5It is to be noted that the transfer fun
tion R0 depends on the 
hoi
e of the pairsfNx; Dxg and fNK ; DKg.



28 Un
ertainty region dedu
ed from PE identi�
ation...Sin
e R0 satis�es Assumptions 2.1, the sequen
es of N data x(t) and ofN data z(t) 
an therefore be used to identify a full order model of R0.For this purpose, we need to de�ne an unbiased model stru
ture for R0.Sin
e the stru
ture of R0 is a fun
tion of the 
ontroller K and of Gx, letus de�ne it in the following generi
 way:Mdy = �R(�) j R(�) = Z11�1 + Z12�� ; (2.40)where we have that � is a real ve
tor of size, say, p and that Z11(z) andZ12(z) are row ve
tors of size p 
onstru
ted in the same way as Z1 andZ2 in (2.16) and therefore 
ontaining only delays and zeros. As Mdy isan unbiased model stru
ture for R0, there exists a ve
tor �0 su
h thatR0 = R(�0) 2 Mdy. As stated in Proposition 2.2, a PE identi�
ationpro
edure with the N data x(t), the N data z(t) and Mdy yields anunbiased model R(�̂) of R0 and an estimate P� of the 
ovarian
e matrixof �̂. Using now Proposition 2.3, we 
an de�ne an ellipsoidal parametri
un
ertainty region Udy that 
ontains the true parameter ve
tor �0 at theprobability level �(p; �):Udy = f� j (� � �̂)TP�1� (� � �̂) < �g (2.41)From this set Udy, we 
an dedu
e the set of 
orresponding open loopplants G(�) de�ned as:Ddy = �G(�) j G(�) = Nx +DKR(�)Dx �NKR(�) and � 2 Udy� (2.42)The nominal open-loop model derived from R(�̂) is G(�̂). It is importantto note that, using the expression of R(�) in (2.40), the un
ertaintyregion Ddy 
an also be rewritten as follows:Ddy = �G(�) j G(�) = Gx + Z13�1 + Z14� and � 2 Udy� (2.43)with Z13 = GxZ12 + (DKZ11=Dx) and Z10 = Z12 � (NKZ11=Dx)Properties of Udy and Ddy.�0 2 Udy with probability �(p; �)
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ertainty region dedu
ed from PE identi�
ation... 29G0 = G(�0) 2 Ddy with probability �(p; �)We have thus de�ned an un
ertainty region Ddy that is 
entered at themodel G(�̂) derived from the identifed Youla parameter R(�̂) and that
ontains the true system G0 at a 
ertain probability level.2.3 General stru
ture of the un
ertainty regionsdedu
ed from PE identi�
ationIn the previous se
tion, un
ertainty regions 
ontaining the true systemhave been obtained as a result of open-loop identi�
ation, the modelerror model identi�
ation and dire
t, indire
t and Dual-Youla 
losed-loop identi�
ation. These un
ertainty regions take the form of a set ofparametrized open-loop transfer fun
tions where the parameter ve
torlies in an ellipsoid U . This fa
t 
an be summarized in the followingproposition.Proposition 2.5 Consider G0 = G(z; Æ0), the true system presentedin Se
tion 2.2.1. The un
ertainty regions D resulting from predi
tionerror identi�
ation, and whi
h 
ontain the true system G0 at a pres
ribedprobability level, 
an all be des
ribed in the following generi
 form:D = �G(z; Æ) j G(z; Æ) = e+ ZNÆ1 + ZDÆ and Æ 2 U = fÆ j (Æ � Æ̂)TR(Æ � Æ̂) < 1g�(2.44)where� Æ 2 Rk�1 is a real parameter ve
tor;� Æ̂ is the parameter estimate resulting from the identi�
ation step;� R is a symmetri
 positive de�nite matrix 2 Rk�k that is propor-tional to the inverse of the 
ovarian
e matrix of Æ̂;� ZN (z) and ZD(z) are row ve
tors of size k of known transfer fun
-tions;� e(z) is a known transfer fun
tion.



30 Un
ertainty region dedu
ed from PE identi�
ation...Proof. This proposition is a dire
t 
onsequen
e of expressions (2.20),(2.26), (2.35), (2.43). �Proposition 2.5 de�nes the un
ertainty region D. Let us point out thefollowing 
hara
teristi
s of this un
ertainty region.� The un
ertainty region D is simply and dire
tly the result of a PEidenti�
ation pro
edure with unbiased model stru
ture performedon the true system. A PE identi�
ation pro
edure with unbiasedmodel stru
ture leading to an un
ertainty region will be 
alled avalidation experiment in the sequel.� The true system G0 lies in D at a 
ertain probability level that is�xed by the designer.� The un
ertainty region D is 
entered at G(z; Æ̂) whi
h is a model ofthe true system G0. This model is either the identi�ed model (inopen-loop identi�
ation) or the model of the true system G0 thatis derived from the identi�ed transfer fun
tion (in the other 
asesof identi�
ation). This model G(z; Æ̂) is generally 
hosen as modelfor 
ontrol design. However, it is of 
ourse not a requirement.� Di�erent identi�
ation experiments (i.e. open-loop or 
losed-loopidenti�
ation, di�erent measured data, ...) lead to di�erent identi-�ed parameter ve
tors, di�erent 
ovarian
e matri
es, and thereforealso di�erent sets of systems D(i).It has been noted in Chapter 1 that other te
hniques (i.e. set mem-bership identi�
ation and the model invalidation 
on
ept) have been de-veloped to estimate an un
ertainty region 
ontaining the true systemunder a variety of assumptions that are often a great distan
e from the
lassi
al assumptions used in PE identi�
ation. These te
hniques generi-
ally aim at produ
ing 
lassi
al frequen
y domain linear fra
tional un
er-tainty regions used in mainstream robust 
ontrol theory su
h as additiveun
ertainty regions (see e.g. [70, 56, 66, 49℄) or 
oprime fa
tor un
er-tainty regions (see e.g. [16℄). The reason for produ
ing su
h 
lassi
alun
ertainty regions is that a large number of robustness tools have beendeveloped for these parti
ular types of un
ertainty regions [92, 91, 86℄.Our un
ertainty region D is quite di�erent from these standard un
er-tainty regions. In order to establish these di�eren
es, let us 
ompare theun
ertainty region D with e.g. the additive un
ertainty region de�nedbelow.



Un
ertainty region dedu
ed from PE identi�
ation... 31De�nition 2.4 (additive un
ertainty region) Let us 
onsider a sta-ble model Gmod and a stable transfer fun
tion �(z). An additive un
er-tainty region of size � is then de�ned as follows:Ga = fGin(z) j Gin(z) = Gmod(z)+�(z) with k �(z) k1< �g: (2.45)By 
omparing (2.44) and (2.45), several di�eren
es 
an be noted. How-ever, the major di�eren
e is that the un
ertainty part Æ in D is a realparameter ve
tor and not a transfer fun
tion as in the additive un
er-tainty region. Our un
ertainty region D is indeed a parametri
 un
er-tainty region and not a frequen
y domain un
ertainty region.Due to the huge developments a
hieved in robust 
ontrol theory inthe last years, a lot of new robustness results are now also available forun
ertainty sets with a parametri
 (i.e. real) un
ertainty part (see e.g.[34, 35, 53, 72, 7, 4, 5℄). Some of these results will help us to developrobustness tools adapted to the un
ertainty region D even though ma-nipulations of D and new results will also be required to obtain theserobustness tools.We have developed a robust stability analyzis tool (see Chapter 4)as well as a robust performan
e analysis tool (see Chapter 5) for D.The robust analysis tool is a ne
essary and suÆ
ient 
ondition for thestabilization of all plants in D by a given 
ontroller. This 
onditionis therefore a 
ondition for the stabilization of the true system G0 bythis 
ontroller. The robust performan
e analysis tool is an LMI (LinearMatrix Inequality) pro
edure 
omputing exa
tly the worst 
ase perfor-man
e a
hieved by a given 
ontroller over all plants in D. This worst
ase performan
e is therefore a lower bound of the performan
e a
hievedby the 
onsidered 
ontroller with the true system G0.We have also developed another type of result for the un
ertaintyregion D that no more pertains to the validation of one parti
ular 
on-troller, but pertains to determining what quality an un
ertainty regionD must possess for it to be tuned for robustly stable 
ontroller design.Indeed, in Chapter 3, we introdu
e a measure of size of the un
ertaintyset D, the worst 
ase �-gap, that is dire
tly 
onne
ted to the size of theset of model-based 
ontrollers that are guaranteed by the �-gap theory[84℄6 to stabilize all plants in D. More parti
ulary, the smaller is this6This 
ontroller set is not guaranteed to 
ontain all stabilizing 
ontrollers.



32 Un
ertainty region dedu
ed from PE identi�
ation...measure, the larger is the set of robustly stabilizing 
ontrollers. Thisrobust stability measure 
an thus be used as a tool to assess the qual-ity (with respe
t to robustly stable 
ontroller design) of an un
ertaintyregion D obtained by a validation experiment (i.e. a PE identi�
ationexperiment). This robust stability measure also draws guidelines for thedesign of the validation experiment: a validation experiment should al-ways aim at produ
ing an un
ertainty region D with a small worst 
ase�-gap sin
e it implies that the obtained un
ertainty region will have alarge set of robustly stabilizing 
ontrollers.2.4 Con
lusionsIn this 
hapter, we have shown that a validation experiment (i.e. aPE identi�
ation pro
edure with unbiased model stru
ture) allows oneto design an un
ertainty region 
ontaining the true system at a 
er-tain probability level, and this without adding any further assumptions.This un
ertainty region takes the form of a set of parametrized transferfun
tions whose parameter ve
tor is 
onstrained to lie in an ellipsoid.



Chapter 3A measure of robuststability for the un
ertaintyregion DIn the previous 
hapter, we have presented the design of an un
ertaintyregion using a PE identi�
ation pro
edure performed on the true systemusing an unbiased model stru
ture. We 
all this pro
edure a validationexperiment. The un
ertainty region D dedu
ed from su
h validation ex-periment takes the form of a set of transfer fun
tion parametrized by areal ve
tor whi
h is 
onstrained to lie in an ellipsoid. The un
ertaintyregion D has the property to 
ontain the true system G0 at a probabilitylevel that 
an be �xed by the designer. The general stru
ture of D isgiven in (2.44). This expression of D does not inform us about the sizeof the set of 
ontrollers that robustly stabilize all plants in D. In otherwords, by observing D, we 
an not say if this 
ontroller set is large orsmall. As, in Chapter 4, we will dedu
e the stabilization of the truesystem by a given 
ontroller by the veri�
ation of the stabilization ofall plants in D by the 
onsidered 
ontroller, this la
k of information is areal drawba
k. That is why, in this 
hapter, we introdu
e a measure ofrobust stability for the un
ertainty region D that is dire
tly 
onne
tedto the size of a set of model-based 
ontrollers that are guaranteed torobustly stabilize D (i.e. that stabilize all plants in D).This robust stability measure for D is de�ned as the worst 
ase (i.e.the largest) �-gap [84, 85℄ between a model Gmod and the plants in D.Here Gmod is the model that will be used for 
ontrol design. This model33



34 A measure of robust stability for the un
ertainty region DGmod is generally the 
enter of the 
onsidered un
ertainty region D.However, it is not a requirement: this model 
an be also a redu
ed ordermodel obtained from this 
enter or an a-priori given model.Our �rst 
ontribution is to show that the worst 
ase �-gap 
an be
omputed frequen
y-wise using an LMI-based optimization problem atea
h frequen
y. Our se
ond 
ontribution is to show that the smaller theworst 
ase �-gap between the model Gmod and all plants in some D, thelarger is the set of Gmod-based 
ontrollers 1 that are guaranteed by the�-gap theory to robustly stabilize D. The worst 
ase �-gap is thus anindi
ator of how well an un
ertainty set D is tuned for robustly stable
ontroller design based on the model Gmod (
hosen for 
ontrol design).A too large indi
ator will therefore in
ite the designer to reje
t the un-
ertainty region and to perform a new validation experiment. We alsoshow that the worst 
ase �-gap 
an be used as a tool for the sele
tionof the un
ertainty region that is best tuned for robust 
ontrol design, inthe 
ase where di�erent validation experiments have delivered di�erentun
ertainty regions D(i). Finally, and it may be the most interestingresult, sin
e the worst 
ase �-gap 
hara
terizes what quality an un
er-tainty region D (and therefore also the validation experiment that yieldsthis un
ertainty set) must possess for it to be tuned for robust 
ontroldesign, our result leads to guidelines for the design of the validation ex-periment. This result may therefore be 
onsidered as the �rst step inthe dire
tion of PE identi�
ation for robust 
ontrol.The �-gap metri
 is thus 
hosen to 
hara
terize the amount of un-
ertainty (i.e. the distan
e) between the model Gmod and the plants inan un
ertainty region D. Our approa
h is thus based on the embeddingof the parametri
 un
ertainty region D into a larger un
ertainty set de-�ned by the �-gap metri
. This introdu
es a 
onservatism, but allowsus to use the �-gap theory to 
hara
terize the size of the 
ontroller setthat is guaranteed (by this theory) to robustly stabilize D. It is obviousthat similar results 
ould have been dedu
ed from the embedding of Dinto e.g. an additive or a multipli
ative un
ertainty region. However,the 
hoi
e of the �-gap metri
 is motivated by the fa
t that this metri
generally leads to the least 
onservative robust stability results [86℄.1The Gmod-based 
ontrollers are the 
ontrollers designed from Gmod



A measure of robust stability for the un
ertainty region D 35Chapter outline. We �rst present, in Se
tion 3.1, the robust stabil-ity results linked to the �-gap metri
. In Se
tion 3.2, we then de�nethe worst �-gap between a model and an un
ertainty region D and apro
edure to 
ompute it exa
tly is given in Se
tion 3.3. In Se
tion 3.4,the worst 
ase �-gap is then related to the size of the set of model-based
ontrollers that are guaranteed by the �-gap theory to robustly stabilizean un
ertainty region D. After having given di�erent possible uses ofthe worst 
ase �-gap , we �nish this 
hapter by presenting a simulationexample.3.1 The �-gap metri
 and its robust stabilitypropertiesAs said in the introdu
tion of this 
hapter, the robust stability mea-sure for D is the worst-
ase �-gap between the model Gmod and theun
ertainty set D. The worst-
ase �-gap is an extension of the �-gap,introdu
ed by Vinni
ombe [84℄, whi
h is a measure of distan
e betweentwo transfer fun
tions. For the sake of 
ompleteness, we �rst brie
yre
all the de�nition of the �-gap for s
alar transfer fun
tions.3.1.1 The Vinni
ombe �-gap between two plantsDe�nition 3.1 The gap metri
 between two transfer fun
tions G1 andG2, introdu
ed by Vinni
ombe [84℄ and denoted Æ�, is de�ned asÆ�(G1; G2) = ( max! � �G1(ej!); G2(ej!)� if W (G1; G2) = 01 otherwise (3.1)where� �G1(ej!); G2(ej!)� , jG1(ej!)�G2(ej!)jp1 + jG1(ej!)j2p1 + jG2(ej!)j2 (3.2)and where W (G1; G2) = wno(1 +G�1G2) + �(G2)� ~�(G1).Here G�(ej!) = G(e�j!), �(G) (resp. ~�(G)) denotes the number ofpoles of G in the 
omplement of the 
losed (resp. open) unit dis
, whilewno(G) denotes the winding number about the origin of G(z) as z fol-lows the unit 
ir
le indented into the exterior of the unit dis
 around



36 A measure of robust stability for the un
ertainty region Dany unit 
ir
le pole and zero of G(z).If the winding number 
ondition W (G1; G2) = 0 is satis�ed, thenthe �-gap between two plants has a simple frequen
y domain interpreta-tion (in the SISO 
ase). Indeed, the quantity �(G1(ej!); G2(ej!)) is the
hordal distan
e between the proje
tions of G1(ej!) and G2(ej!) ontothe Riemann sphere of unit diameter with South Pole at the origin ofthe 
omplex plane [84℄. The distan
e Æ�(G1; G2) between G1 and G2 istherefore, a

ording to (3.1), the supremum of these 
hordal distan
esover all frequen
ies. Observe that 0 6 Æ�(G1; G2) 6 1:3.1.2 The generalized stability margin of a 
losed loopsystemConsider now a 
losed loop system made up of the feedba
k inter
onne
-tion of a system G and a 
ontroller C: see Figure 3.1. The 
losed looptransfer fun
tion matrix between [r1 r2℄T and [y u℄T 
an be written asT (G;C) = 0� T11 T12T21 T22 1A = 0� GC1+GC G1+GCC1+GC 11+GC 1A : (3.3)
v(t)r2(t)

r1(t)
y(t)u(t) GC

+

-

+
+

+

+

Figure 3.1: Closed-loop 
onne
tion of a system G and a 
ontroller CDe�nition 3.2 The generalized stability margin of the 
losed loopsystem is de�ned asbGC = 8<: kT (G;C)k�11 if [C G℄ is stable0 otherwise (3.4)



A measure of robust stability for the un
ertainty region D 37It 
an be shown [84℄ that an alternative de�nition isbGC =8><>: min! ��G(ej!);� 1C(ej!)� if [C G℄ is stable0 otherwise (3.5)Thus, the generalized stability margin of a 
losed loop system [C G℄ ismeasured by the least 
hordal distan
e between the proje
tions on theRiemann sphere of G and of the inverse of �C. It is to be noted that,for a given plant G, the generalized stability margin has a maximumbopt(G) (see e.g. [91℄) given bybopt(G) = maxC bGC =q1� k � N M � k2H ; (3.6)where k A kH is the Hankel norm of the operator A (see e.g. [92℄) andfN;Mg is the normalized 
oprime fa
torization of G i.e. the 
oprimefa
torization (see De�nition 2.3) su
h that N�N +M�M = 13.1.3 Robust stability and the �-gapThe main interest of the �-gap metri
 is its use in a range of robuststability results. One of this result relates the size of the set of robustlystabilizing 
ontrollers of a �-gap un
ertainty set (i.e. an un
ertainty setde�ned with the �-gap ) to the size of this un
ertainty set [84, 85℄.Proposition 3.1 ([84, 85℄) Let us 
onsider an �-gap un
ertainty setG� of size � and 
entered at a model Gmod:G� = fG j Æ�(Gmod; G) � �g:Then, a 
ontroller C stabilizing Gmod stabilizes all plants in the un
er-tainty region G� if and only if it lies in the 
ontroller set:fC(z) j bGmodC > �gThe size � of a �-gap un
ertainty set G� is thus dire
tly 
onne
ted tothe size of the set of all 
ontrollers that robustly stabilize G� . Moreover,the smaller is this size �, the larger is the set of 
ontrollers that robustlystabilize the un
ertainty set G� . Let us now present a dire
t 
onsequen
eof Proposition 3.1 whi
h relates the size of the set of 
ontrollers that areguaranteed to stabilize two plants G1 and G2 to Æ�(G1; G2) [84℄.



38 A measure of robust stability for the un
ertainty region DCorollary 3.1 ([84℄) Let us 
onsider a nominal plant G1 and a per-turbed plant G2 and denote Æ�(G1; G2) the �-gap between these twoplants. Then, a 
ontroller C stabilizing G1 also stabilizes G2 if this
ontroller lies in the 
ontroller setf C j bG1;C > Æ�(G1; G2)g3.2 The worst 
ase �-gap between a model and DThe ni
e stability properties presented in the previous se
tion show thatthe Gmod-based 
ontroller set that is guaranteed (by Proposition 3.1) torobustly stabilize D will be large, if the largest �-gap between Gmod andany plant in D remains small. We 
all this \largest �-gap" the worst
ase �-gap ÆWC(Gmod;D) between Gmod and the set D.De�nition 3.3 Consider an un
ertainty region D having the stru
turegiven in (2.44) and a model Gmod. The worst 
ase Vinni
ombe distan
eÆWC(Gmod;D) is given by2 :ÆWC(Gmod;D) = maxGin2D Æ�(Gmod; Gin) (3.7)Another important quantity is now de�ned: the worst 
ase 
hordaldistan
e. This quantity, whose 
omputation is the result of a 
onvex op-timization problem involving LMI 
onstraints as will be shown in Se
tion3.3, will allow us to give an alternative expression for ÆWC(Gmod;D).De�nition 3.4 At a parti
ular frequen
y !, we de�ne �WC(Gmod(ej!);D)as the maximum 
hordal distan
e between Gmod(ej!) and the frequen
yresponses of all plants in D at this frequen
y:�WC(Gmod(ej!);D) = maxGin2D �(Gmod(ej!); Gin(ej!)) (3.8)This last quantity 
an now be used to give an alternative expressionof the worst 
ase Vinni
ombe distan
e. This is done in the followinglemma, whi
h is an extension of a property presented in [85, page 66℄.2Note that, with some abuse, even though it 
ould happen that the term \supre-mum" should be used instead of \maximum", we will always use the term \maximum"in the sequel.
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ertainty region D 39Lemma 3.1 If W (Gmod; Gin) = 0 for one plant Gin 2 D, then theworst 
ase Vinni
ombe distan
e ÆWC(Gmod;D) de�ned in (3.7) 
an alsobe expressed in the following way using the worst 
ase 
hordal distan
e:ÆWC(Gmod;D) = max! �WC(Gmod(ej!);D) (3.9)where �WC(Gmod(ej!);D) is de�ned in (3.8).Proof. The winding number 
ondition may be omitted in (3.9). In-deed, assume there exists one G1 2 D for whi
h W (Gmod; G1) 6= 0,i.e. Æ�(Gmod; G1) = 1. Sin
e the ellipsoid U in the expression (2.44)of D is a 
onne
ted set, then there always exists a pie
ewize 
ontin-uous appli
ation � of [0 1℄ to plants in D su
h that �(0) = Gin and�(1) = G1. As W (Gmod; Gin) = 0 and W (Gmod; G1) 6= 0, there existsa G2 = �(�) 2 D su
h that (1 + G�mod(ej!0)G2(ej!0) = 0) and there-fore su
h that �(Gmod(ej!0); G2(ej!0)) = 1 for some frequen
y !0. So,ÆWC(Gmod;D) = 1 �Remark. If Gmod 2 D, we always have W (Gmod; Gmod) = 0 and there-fore (3.9) is always valid.3.3 Computation of the worst 
ase 
hordal dis-tan
e and worst 
ase �-gapIn the previous subse
tion, we have de�ned the worst 
ase �-gap be-tween the model Gmod and all plants in an un
ertainty region D hav-ing the general stru
ture (2.44). Now we give a pro
edure to 
omputethis worst 
ase �-gap ÆWC(Gmod;D). A

ording to Lemma 3.1, this isequivalent to �nding a pro
edure to 
ompute the worst 
ase 
hordal dis-tan
e �WC(Gmod(ej!);D) de�ned in (3.8), sin
e ÆWC(Gmod;D) is themaximum over all frequen
ies of the worst 
ase 
hordal distan
e. Inthe following theorem, we show that the 
omputation of the worst 
ase
hordal distan
e �WC(Gmod(ej!);D) at a parti
ular frequen
y ! 
an beformulated as a 
onvex optimization problem involving Linear MatrixInequality (LMI) 
onstraints [17℄. An LMI is a matrix inequality ofthe form F (�) �= F0 +Pqi=1 �iFi � 0; where � 2 Rq is the variable, andFi = F Ti 2 Rt�t, i = 0; : : : ; q are given. Several algorithms that havepra
ti
al eÆ
ien
y have been devised for solving these problems, see[82℄. The LMI problems 
an be solved using the free ware 
ode SP [82℄



40 A measure of robust stability for the un
ertainty region Dand its Matlab/S
ilab interfa
e LMITOOL [32℄ or the available 
ommer
ialMatlab Toolbox, LMI Control Toolbox [36℄.Theorem 3.1 Consider a model Gmod and an un
ertainty region Dgiven in (2.44). Then �WC(Gmod(ej!);D) = p
opt; where 
opt is theoptimal value of 
 in the following standard 
onvex optimization prob-lem involving LMI 
onstraints evaluated at !:minimize 
over 
; �subje
t to � � 0 and� Re(a11) Re(a12)Re(a�12) Re(a22) �� � � R �RÆ̂(�RÆ̂)T Æ̂TRÆ̂ � 1 � < 0 (3.10)where� a11 = (Z�NZN � Z�NxZD � Z�Dx�ZN + Z�Dx�xZD) � 
(Z�NQZN +Z�DQZD);� a12 = Z�Ne� Z�Nx� Z�Dex� + Z�Dxx� � 
(Z�NeQ+ Z�DQ);� a22 = ee� � e�x� ex� + xx� � 
(ee�Q+Q);� Q = 1 + x�x and x = Gmod(ej!):The worst 
ase �-gap is then obtained asÆWC(Gmod;D) = max! �WC(Gmod(ej!);D)Proof. We prove that the square root of the solution of the LMI opti-mization problem gives the worst 
ase 
hordal distan
e �WC(Gmod(ej!);D)at some frequen
y !. The derivation of the worst 
ase �-gap is a dire
t
onsequen
e of Lemma 3.1.If we denote the frequen
y response of the model Gmod(ej!) by x,and that of any plant G(ej!; Æ) 2 D by y(Æ), then a 
onvenient way tostate the problem of 
omputing the worst 
ase 
hordal distan
e at somefrequen
y ! is as follows:minimize 
 su
h that �(x; y(Æ))2 < 
 for all y(Æ) 2 D
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ertainty region D 41The expression �(x; y(Æ))2 < 
 has to be transformed into an LMI
onstraint. This 
an easily be done as proved in the following expres-sions.  jx� y(Æ)jp1 + jxj2p1 + jy(Æ)j2!2 < 
 ()x�x+ y(Æ)�y(Æ) � y(Æ)�x� x�y(Æ) � 
(1 + x�x)(1 + y(Æ)�y(Æ)) < 0()� y(Æ)1 ��� 1� 
(1 + x�x) �x�x� x�x� 
(1 + x�x) �� y(Æ)1 � < 0(3.11)By pre-multiplying (3.11) by (1 + ZDÆ)� and post-multiplying thesame expression by (1 + ZDÆ), we obtain:� e+ ZNÆ1 + ZDÆ ��� 1� 
(1 + x�x) �x�x� x�x� 
(1 + x�x) �� e+ ZNÆ1 + ZDÆ � < 0(3.12)whi
h is equivalent with the following 
onstraint on Æ with variable 
:� Æ1 ��� a11 a12a�12 a22 �� Æ1 � < 0 (3.13)with a11, a12 and a22 as de�ned in the statement of Theorem (3.1). Sin
eÆ is real, it 
an be shown that (3.13) is equivalent with (Æ)z }| {� Æ1 �T � Re(a11) Re(a12)Re(a�12) Re(a22) �� Æ1 � < 0 (3.14)This last expression is equivalent to stating that �(Gmod(ej!); G(ej!; Æ))2 <
 for a parti
ular Æ 2 U . However, this must be true for all Æ 2 U .Therefore, (3.14) must be true for all Æ su
h that:�(Æ)z }| {� Æ1 �T � R �RÆ̂(�RÆ̂)T Æ̂TRÆ̂ � 1 �� Æ1 � < 0 (3.15)
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ertainty region Dwhi
h is equivalent to the statement \Æ 2 U".Let us now re
apitulate. Computing �WC(Gmod(ej!);D)2 is equiv-alent to �nding the smallest 
 su
h that  (Æ) < 0 for all Æ for whi
h�(Æ) < 0. By the S pro
edure [55, 17℄, this problem is equivalent to �nd-ing the smallest 
 and a positive s
alar � su
h that  (Æ) � ��(Æ) < 0,for all Æ 2 Rk�1 whi
h is pre
isely (3.10). To 
omplete this proof, notethat the worst 
ase 
hordal distan
e at ! is thus equal to p
opt where
opt is the optimal value of 
. �Remark. Our 
omputation of the worst 
ase �-gap requires thus the
omputation of the worst 
ase 
hordal distan
e over a frequen
y grid.3.4 A robust stability measure for DIn the previous se
tion, the notion of worst 
ase �-gap between a modelGmod and an un
ertainty region D has been introdu
ed and a pro
edurehas been given to 
ompute this distan
e. This worst 
ase �-gap 
anbe 
onsidered as a robustness measure of D with respe
t to robustlystable 
ontroller design based on the model Gmod. We have indeed thefollowing result.Proposition 3.2 Consider an un
ertainty region D having the stru
-ture given by (2.44) and a model Gmod. All 
ontrollers C that stabilizeGmod and that lie in the setC(Gmod;D) = fC j bGmod;C > ÆWC(Gmod;D)g (3.16)are guaranteed to stabilize all plants in the un
ertainty region D. It isto be noted that the stability margin bGmod;C a
hievable by a 
ontrollerC with Gmod is bounded by bopt(Gmod) de�ned in (3.6).Proof. Using the de�nition of the worst 
ase �-gap given in (3.7), wesee that D is embedded in the un
ertainty region fGjÆ�(Gmod; G) �ÆWC(Gmod;D)g. This theorem is thus a dire
t 
onsequen
e of Proposi-tion 3.1. �Proposition 3.2 tells us that the worst 
ase �-gap between the modelGmod and an un
ertainty set D is a measure of size of the set D that is
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tly 
onne
ted to the size of the set C(Gmod;D) of Gmod-based 
on-trollers that are guaranteed to stabilize all plants in D. Proposition 3.2shows also that the smaller ÆWC(Gmod;D), the larger is this robustly sta-bilizing 
ontroller set. Thus, the worst 
ase �-gap is a ni
e and 
ompa
tmeasure of the ability of an un
ertainty set D to be robustly stabilizedby a large set of 
ontrollers designed from Gmod and therefore of howwell the un
ertainty region D is tuned for robustly stable 
ontroller de-sign based on Gmod.It is to be noted that there may be additional 
ontrollers outsidethe set C(Gmod;D) that stabilize all models in D. Indeed, a

ording toProposition 3.1, the set C(Gmod;D) 
ontains all 
ontrollers that stabi-lize all systems in the un
ertainty set fGjÆ�(Gmod; G) � ÆWC(Gmod;D)gthat embeds D. However, the advantage of this des
ription is that thesize of the set C(Gmod;D) (i.e. ÆWC(Gmod;D)) is only a fun
tion of Gmodand D. In Chapter 4, a ne
essary and suÆ
ient 
ondition will be givenfor the stabilization of all plants in D by a given 
ontroller. However,this ne
essary and suÆ
ient 
ondition may not be used as a measure ofrobust stability for D, as will be shown in the next 
hapter.3.4.1 Pra
ti
al uses of the worst 
ase �-gapAs said above, the worst 
ase �-gap is a ni
e and 
ompa
t measure ofhow well the un
ertainty region D is tuned for robust 
ontrol design withrespe
t to Gmod. In order to present pra
ti
al uses of this measure, letus 
onsider the two following situations:1. We have performed one validation experiment leading to one un-
ertainty region D. No model is given for 
ontrol design.2. We have performed di�erent validation experiments leading to dif-ferent un
ertainty regions D(i) and somebody has given us a modelGmod for 
ontrol design.First situationIn the �rst situation, a model has to be 
hosen for 
ontrol design. Thismodel Gmod is typi
ally 
hosen equal to the 
enter G(z; Æ̂) of the un-
ertainty region D dedu
ed from the validation experiment. The worst
ase �-gap ÆWC(G(z; Æ̂);D) 
an then be used as a tool to \validate the
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ertainty region Dvalidation experiment". Indeed, if the worst 
ase �-gap is small withrespe
t to the optimal stability margin bopt(G(z; Æ̂)) (see (3.6)), then theset C(G(z; Æ̂);D) of G(z; Æ̂)-based 
ontrollers that are guaranteed to ro-bustly stabilize D is large and the designer will be therefore generallyin
ited to keep the un
ertainty region D: a 
ontroller 
an be designedfrom Gmod and the results of the next 
hapters 
an be used to validatethe 
ontroller for stability and performan
e with respe
t to the \vali-dated" un
ertainty region D. On the 
ontrary, if the worst 
ase �-gap islarge with respe
t to the optimal stability margin bopt(G(z; Æ̂)), then theset C(G(z; Æ̂);D) of G(z; Æ̂)-based 
ontrollers that are guaranteed to ro-bustly stabilize D is small. Therefore, even though the set C(G(z; Æ̂);D)is not guaranteed to 
ontain all robustly stabilizing 
ontrollers, the de-signer will be nevertheless generally in
ited to reje
t the un
ertaintyregion D and to perform a new validation experiment in order to obtaina new un
ertainty region Dbis with a larger set of stabilizing 
ontrollers.For this purpose, the designer 
ould e.g. use the guidelines that will bepresented in Se
tion 3.4.2.Se
ond situationIn the se
ond situation, the worst 
ase �-gap 
an be used as a tool tosele
t one un
ertainty region among the di�erent un
ertainty regions ob-tained from the di�erent validation experiments, using a robust stability
riterion. In order to 
ompare these un
ertainty regions, we have indeedthis �rst result:Theorem 3.2 Consider two un
ertainty regions D(1) and D(2) obtainedfrom two di�erent validation experiments. If we have thatÆWC(Gmod;D(1)) < ÆWC(Gmod;D(2)), then C(Gmod;D(2)) � C(Gmod;D(1)).Theorem 3.2, whi
h dire
tly results from Proposition 3.2, gives usguidelines to 
hoose the un
ertainty region that is best tuned to ro-bustly stable 
ontroller design with respe
t to Gmod. These guidelinesare summarized in the following proposition.Proposition 3.3 Consider t un
ertainty regions D(i) obtained from tdi�erent validation experiments and a model Gmod. Then the un
er-tainty region D� that generates the largest set C(Gmod;D(i)) (i = 1:::t)of robustly stabilizing 
ontrollers is the un
ertainty region:D� = argminD(i) ÆWC(Gmod;D(i)) (3.17)
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on
erning the se
ond situation.� The 
hoi
e of the model Gmod for the 
ontrol design is an impor-tant feature. Indeed, we analyze the robustness properties of theun
ertainty regions D(i) with respe
t to 
ontrollers designed fromGmod (and stabilizing it). If the smallest worst 
ase �-gap betweenGmod and the di�erent D(i) remains \large", then the 
hosen modelGmod is not appropriate for a 
ontrol design pro
edure for G0 be-
ause the a
tual Æ�(Gmod; G0) may be too large. A better modelGmod must then be 
hosen: for example, the 
enter of one of theun
ertainty regions D(i). This important matter will be furtherdis
ussed in Se
tion 3.4.3.� As already said earlier, the set C(Gmod;D(i)) 
ontains all 
on-trollers that stabilize all systems in the un
ertainty setfGjÆ�(Gmod; G) � ÆWC(Gmod;D(i))g that embeds D(i). Thus,there may be additional 
ontrollers outside the set C(Gmod;D(i))that stabilize all models in D(i), in that sense, our analysis is
onservative. However, sin
e Gmod lies typi
ally within all D(i),we essentially introdu
e the same 
onservatism for ea
h D(i) andtherefore our pro
edure remains valid for the sele
tion of the bestD(i).3.4.2 Consequen
es for the design of the validation ex-perimentIn the previous subse
tions, we have shown that the worst 
ase �-gapbetween the model Gmod and an un
ertainty region D dedu
ed from anidenti�
ation experiment is a good measure to determine if the un
er-tainty region D is well tuned for robustly stable 
ontroller design basedon the model Gmod. Our result therefore gives a meaning to the 
on
eptof identi�
ation for robust 
ontrol: a validation experiment (i.e. an iden-ti�
ation experiment) is \tuned for robust 
ontrol design" if the worst
ase �-gap for the un
ertainty set delivered by this validation experi-ment is small, be
ause it implies that, for that un
ertainty set, the setC(Gmod;D) of robustly stabilizing 
ontrollers is large.Our result gives us also guidelines to design the validation experi-ment: we should always aim to design a validation experiment leadingto an identi�ed model Gmod and an un
ertainty region D su
h that theworst 
ase �-gap between Gmod and D is the smallest possible. In order
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ertainty region Dto a
hieve this, the un
ertainty distribution delivered by the validationexperiment has to be small in the frequen
y range where the resolutionof the �-gap metri
 is the largest i.e. around the 
ut-o� frequen
y [86℄.The validation experiment should therefore be designed su
h that theinput signal has a large power spe
trum around the 
ut-o� frequen
y ofthe true system. Indeed, the un
ertainty distribution in the frequen
yrange is asymptoti
ally inversely proportional to the spe
trum of theinput signal in open-loop identi�
ation [63℄ and inversely proportionalto the spe
trum of the input signal due to the referen
e signal in 
losed-loop identi�
ation [44℄.It is to be noted that, in [24℄, su
h an idea of minimizing a qualitymeasure of an un
ertainty region to �nd the best possible un
ertainty re-gion is also proposed in the framework of an iterative s
heme. However,the measure presented in [24℄ is a fun
tion of the 
ontroller present in theloop and is therefore only a measure of quality of the un
ertainty regionwith respe
t to that parti
ular 
ontroller as opposed to our measure (theworst 
ase �-gap ) whi
h is 
ontroller-independent.3.4.3 Validation of an a-priori given model GmodAs already stated earlier, the worst-
ase �-gap ÆWC(Gmod;D) is an in-di
ator of how well the un
ertainty set D is tuned for robustly stable
ontroller design with a model Gmod. Therefore, this worst 
ase �-gapgives not only information about D, but it gives also information aboutthe model Gmod. In fa
t, it is an indi
ator of the quality of the pairfGmod Dg for robust 
ontrol design. This has the following 
onsequen
esfor the 
ase where the model Gmod that will be used for 
ontrol designis given.The model Gmod for 
ontrol design 
an indeed either be 
hosen equalto the identi�ed model G(z; Æ̂), 
enter of the 
onsidered un
ertainty re-gion D or be given. In the se
ond 
ase (i.e. the model Gmod is given),we have really no idea if that model is reliable or not for 
ontrol de-sign with respe
t to the true system G0. A validation experiment onG0 leading to a set D and the 
omputation of the 
orresponding worst
ase �-gap ÆWC(Gmod;D) will help us to assess the quality of Gmod for(robust) 
ontrol purpose. Indeed, if the obtained worst 
ase �-gap isrelatively small (with respe
t to bopt(Gmod)), we then know that theset C(Gmod;D) of Gmod-based 
ontrollers that robustly stabilize D (and
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ertainty region D 47therefore also the true system G0) is relatively large. Su
h result val-idates the model Gmod. We 
an see this result from an other point ofview : if ÆWC(Gmod;D) is small, then Æ�(Gmod; G0) is also small, sin
ewe have that Æ�(Gmod; G0) � ÆWC(Gmod;D):Using Corollary 3.1, we 
an therefore 
on
lude that a small ÆWC(Gmod;D)implies a large set of 
ontrollers that stabilizes both Gmod and G0.3.5 A simulation exampleIn this se
tion, we give an example of the use of the worst 
ase �-gap as asele
tion tool for un
ertainty regions delivered by validation experiments(see Se
tion 3.4.1, se
ond situation). For this purpose, let us 
onsiderthe following true system G0 and the following model Gmod of this truesystem. y = G0u+ e = 0:1047z�1 + 0:0872z�21� 1:5578z�1 + 0:5769z�2 u+ eGmod = 0:1060z�1 + 0:0928z�21� 1:5308z�1 + 0:5467z�2where e is a white noise of varian
e 0.1. The a
tual �-gap betweenG0 and Gmod is Æ�(G0; Gmod) = 0:0193. We perform one validationexperiment in open loop and one in 
losed loop (with the 
ontrollerK = (1:27 � 1:04z�1)=(1 � 0:6z�1) in the loop) leading to two dif-ferent un
ertainty regions, ea
h of whi
h 
ontains G0 with probability0.95. We 
all these two un
ertainty regions Dol and D
l, respe
tively.In order to de
ide whi
h of these un
ertainty regions is best tuned forrobustly stable 
ontrol design based on the model Gmod, we 
omputethe measure of robustness of these two un
ertainty regions with respe
tto Gmod, i.e. ÆWC(Gmod;Dol) and ÆWC(Gmod;D
l). For this purpose,we �rst 
ompute the worst 
ase 
hordal distan
es at ea
h frequen
yfor Dol and D
l using the LMI tools developed in Se
tion 3.3. Theworst 
ase 
hordal distan
es at ea
h frequen
y �WC(Gmod(ej!);Dol) and�WC(Gmod(ej!);D
l) are represented in Figure 3.2 where they are 
om-pared with the a
tual 
hordal distan
e �(Gmod(ej!); G0(ej!)) betweenGmod and G0. A

ording to Lemma 3.1 and sin
e W (Gmod; Ĝol) =
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OmegaFigure 3.2: �WC(Gmod(ej!);Dol) (dashed), �WC(Gmod(ej!);D
l) (solid) and�(Gmod(ej!); G0(ej!)) (dashdot) at ea
h frequen
yW (Gmod; Ĝ
l) = 0 (Ĝol and Ĝ
l are the 
enters of Dol and D
l, respe
-tively), we 
an derive the worst 
ase Vinni
ombe distan
es from theworst 
hordal distan
es as follows:ÆWC(Gmod;Dol) = max! �WC(Gmod(ej!);Dol) = 0:2464ÆWC(Gmod;D
l) = max! �WC(Gmod(ej!);D
l) = 0:0384Therefore, by Proposition 3.3, the set C(Gmod;D
l) of 
ontrollers sta-bilizing Gmod that robustly stabilizes D
l is mu
h larger than the setC(Gmod;Dol) that robustly stabilizes Dol. To illustrate this statement,let us design two 
ontrollers from the model Gmod. These two 
ontrollersare given below with the a
hieved generalized stability margins:C1 = 1:8464 � 1:3647z�11� 0:4545z�1 bGmod;C1 = 0:2861C2 = 3 bGmod;C2 = 0:0653We dire
tly see that the 
ontroller C1 is guaranteed to stabilize theplants in the two un
ertainty regions sin
e it belongs to both guaranteed
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ontrollers C(Gmod;Dol) and C(Gmod;D
l) de�ned inProposition 3.2. Indeed:bGmod;C1 > ÆWC(Gmod;Dol) > ÆWC(Gmod;D
l):However, the 
ontroller C2 belongs to C(Gmod;D
l) only : C2 thereforestabilizes all the plants in D
l. As C2 62 C(Gmod;Dol), it is not guaran-teed, by Proposition 3.2, to stabilize all plants in Dol. Proposition 3.2only gives a suÆ
ient 
ondition. To 
he
k whether C2 a
tually stabilizesall plants in Dol, we use the \ne
essary and suÆ
ient" test that willbe developed in Chapter 4. This test fails, and therefore C2 does notstabilize all plants in Dol whereas it does stabilize all plants in D
l byProposition 3.2.3.6 Con
lusionsWe have proposed a measure of robust stability for the un
ertainty re-gion D as delivered by predi
tion error identi�
ation. This measureis the largest �-gap between the nominal model and all plants in theun
ertainty region. We have shown that this measure is 
omputablefrequen
y-wise using an LMI based optimization problem at ea
h fre-quen
y. We have also shown that the smaller the worst 
ase �-gapbetween the model and an un
ertainty region, the larger is the set ofmodel-based 
ontrollers that are guaranteed by the �-gap theory to ro-bustly stabilize all plants in the un
ertainty region. This measure isthus an indi
ator of how well the un
ertainty region is tuned for robust
ontrol design with the 
hosen model. This measure therefore also givesus guidelines to sele
t the un
ertainty region that is best tuned for ro-bust stability analysis among all available ones. To illustrate the impa
tof our results in terms of the 
onne
tion between identi�
ation and ro-bust 
ontrol, we return to the example above. With our robust stabilitymeasure for un
ertainty sets, we were able to 
on
lude that the Gmod-based 
ontroller set that is guaranteed to robustly stabilize D
l is mu
hlarger than the set that is guaranteed to robustly stabilize Dol. Hen
e,the 
losed-loop identi�
ation design that led to the un
ertainty set D
lis a mu
h better experiment design than the open-loop design that ledto Dol. The results of this 
hapter have thus allowed us to establish a
onne
tion between identi�
ation design and stability robustness of the
ontrollers resulting from su
h design. We have therefore paved the wayto a new resear
h �eld i.e. PE identi�
ation for robust 
ontrol.
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Chapter 4A ne
essary and suÆ
ientrobust stability 
onditionfor DIn the previous 
hapters, it has been shown that a PE identi�
ationpro
edure allows one to design an un
ertainty region D 
ontaining thetrue system at a 
ertain probability level. This un
ertainty region takesthe form of a set of parametrized transfer fun
tions where the param-eter ve
tor is 
onstrained to lie in an ellipsoid. We have introdu
ed ameasure of this un
ertainty region that is 
onne
ted to the size of themodel-based 
ontrollers that are guaranteed (by the �-gap theory) tostabilize all plants in D. This measure has been proved to be an indi
a-tor of how well the un
ertainty set D is tuned for robust 
ontrol designwith respe
t to Gmod.In this 
hapter, we 
onsider that the tools presented in the previous
hapter has allowed us to sele
t an un
ertainty region D and a modelGmod and that a 
ontroller C for the true system has been designed fromthe model Gmod. The problem solved in this 
hapter is the problem of�nding a ne
essary and suÆ
ient 
ondition for the stabilization of allplants in the un
ertainty region D by the 
ontroller C. If the 
ontrollerC stabilizes all plants in D, we will say that this 
ontroller is validatedfor stability. The result of this 
hapter pertains thus to the validationof one spe
i�
 
ontroller. It is also important to note that this robuststability 
ondition is also a 
ondition guaranteeing the stabilization ofthe true system G0 by the 
ontroller C.51
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essary and suÆ
ient robust stability 
ondition for DRobust stability theory developed in e.g. [34, 31, 92, 68, 53℄ pro-vides some ne
essary and suÆ
ient 
onditions for the stabilization, by agiven 
ontroller C, of all plants in an un
ertainty region, provided thisun
ertainty region is de�ned in the general LFT (linear fra
tional trans-formation) framework for robust stability analysis. Our 
ontributionin the proposed stability validation pro
edure is to show that one 
anrewrite the 
losed-loop 
onne
tion of the 
ontroller C and all plants inthe un
ertainty region D obtained from a validation experiment into aparti
ular LFT that takes into a

ount the parametri
 des
ription of D(i.e. the un
ertainty part of the obtained LFT is a real ve
tor) and whose(real) stability radius is exa
tly 
omputable, using the result presentedin [53, 72℄. The proposed approa
h has the 
omplementary advantageof being easily extensible to the design of a 
ontroller that is assured tostabilize all plants in D using the result in [73℄ extended in [6℄. Indeed,[73℄ and [6℄ show that several robust synthesis problems for rank-onesLFT's (that is the type of LFT's we here obtain) 
an be stated in termsof 
onvex or quasi-
onvex optimization. It is also to be noted that, sin
ethe un
ertainty region has been rewitten as an LFT, �-synthesis (seee.g. [92℄) may also be 
onsidered in order to design a 
ontroller that isguaranteed to a
hieve a 
ertain level of performan
e with all plants inD. However, the drawba
k of this te
hnique is that it is not guaranteedto 
onverge.In the previous 
hapter, we have already given a 
ondition for thestabilization of all plants in D by a 
ontroller. Indeed, we presentedthere a set C(Gmod;D) of Gmod-based 
ontrollers that are guaranteed tostabilize all plants in D. If the 
ontroller C designed from Gmod lies inC(Gmod;D), then, it stabilizes all plants in D. However, as already saidin Chapter 3, the set C(Gmod;D) is not assured to 
ontain all 
ontrollersthat robustly stabilize D. Indeed, this 
ontroller set only 
ontains all
ontrollers robustly stabilizing all plants in a larger set 1 that embedsD. The advantage in the present approa
h is that the obtained robuststability 
ondition is ne
essary and suÆ
ient. This is a 
onsequen
e ofthe fa
t that our new stability results apply dire
tly to the parametrizedset D resulting from the identi�
ation step, thereby avoiding the 
on-servativeness resulting from the overbounding of D by a larger �-gapun
ertainty set.1i.e. fGjÆ�(Gmod; G) � ÆWC(Gmod;D)g



A ne
essary and suÆ
ient robust stability 
ondition for D 53In [72, 57℄, the authors 
onsider a similar but mu
h simpler stru
-ture than D and show that this simpler stru
ture 
an be expressed asan LFT. In this paper, we give a general formulation of this LFT forgeneral expression of the un
ertainty region D.Other authors have ta
kled the robust stability problem in the pres-en
e of an un
ertainty region de�ned by a real (parameter) ve
tor fromanother point of view (see e.g. [7, 23, 4, 5℄ and referen
es therein). Inthis literature, the stability of an un
ertain polynomial is analyzed. For
ontrol purposes, the analyzed polynomial is the denominator of the
losed-loop transfer fun
tion. In this approa
h, the parameters of theopen-loop system are generally assumed to vary in a hyper
ube (i.e. ea
hparameter varies in an interval) and not in an ellipsoid like in D. How-ever, in [7℄, the treated problem is 
loser to our problem: the authorspresent a pro
edure that gives, for a given 
ontroller, the largest ellip-soid in the spa
e of the system parameters for whi
h the stabilization ofthe 
losed-loop transfer fun
tion denominator is guaranteed. Their ap-proa
h uses Eu
lidean spa
e geometry to proje
t the parameters of theopen-loop system into those of the 
ommon denominator of the 
losed-loop transfer fun
tions and 
onversely. This result 
ould have been usedin order to �nd a pro
edure to validate a 
ontroller for stability. Our
hoi
e for the pro
edure based on the 
omputation of the stability radiusis motivated by the fa
t that this pro
edure uses the general frameworkof the robustness theory whi
h allows one to easily extend our robustanalysis approa
h to robust synthesis using �-synthesis or the results of[73℄.
Chapter outline. In Se
tion 4.1, we present a robust stability the-orem for a real ve
tor un
ertainty. In Se
tion 4.2, we design the LFTframework of all 
losed-loop 
onne
tions made up of a plant in an un
er-tainty set D and a 
ontroller. In Se
tion 4.3, using this LFT frameworkand the robust stability theorem, we dedu
e a ne
essary and suÆ
ient
ondition for the robust stabilization of all plants in D by the 
ontrollerC. We �nish this 
hapter by an example (Se
tion 4.4) and some 
on
lu-sions (Se
tion 4.5).



54 A ne
essary and suÆ
ient robust stability 
ondition for D4.1 Robust stability for a real ve
tor un
ertaintyAs said in the introdu
tion, the aim of this 
hapter is to �nd a ne
essaryand suÆ
ient 
ondition for the stabilization of all plants in an un
er-tainty region D by a given 
ontroller. Robust stability theory providessu
h ne
essary and suÆ
ient 
onditions [34, 31, 92, 68, 53℄. But for theappli
ation of robust stability results, it is required that the 
losed loop
onne
tions of this 
ontroller to all plants in the un
ertainty region berewritten as a set of loops that 
onne
t a known �xed dynami
 matrixM(z) to an un
ertainty part �(z) of known stru
ture that belongs to apres
ribed un
ertainty domain. In this se
tion, we re
all an importantresult of robust stability analysis [72, 53℄ in the 
ase when the un
er-tainty part �(z) is assumed to be a real ve
tor.Let us 
onsider a set of loops [M(z) �℄ that obey the following systemof equations (see Figure 4.1).� p = �qq =M(z)p (4.1)In this set of loops, it is assumed that M(z) 2 RH1 is a known �xedrow ve
tor of size b and that the un
ertainty part � is a real ve
tor2 Rb�1 that varies in the following un
ertainty domain: j�j2 < 1. j�j2represents the 2-norm of the ve
tor � i.e. j�j2 =p�T�.
M

qp

β

Figure 4.1: set of loops [M(z) �℄The robust stability theorem linked to the set of loops [M(z) �℄ is
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ondition for D 55now summarized in the following proposition.Proposition 4.1 IfM(z) 2 RH1 and � 2 Rb�1, then the loops [M(z) �℄given in (4.1) are internally stable for all � 2 Rb�1 su
h that j�j2 < 1if and only if max! �(M(ej!)) � 1 (4.2)The value �(M(ej!)) is 
alled the stability radius of the loop [M(z) �℄at the frequen
y ! and is de�ned below.De�nition 4.1 (stability radius [72, 53℄) ForM(ej!) a known 
om-plex matrix 2 C1�b and � 2 Rb�1, the stability radius �(M(ej!)) isde�ned as follows if Im(M(ej!)) 6= 0:�(M(ej!)) =sjRe(M)j22 � (Re(M)Im(M)T )2jIm(M)j22 (4.3)and �(M(ej!)) = jM j2, if Im(M) = 0. The stability radius is in fa
tthe stru
tured singular value linked to the loop [M(z) �℄: �(M(ej!)) isthe inverse of the smallest value of j�j2 su
h that 1�M(ej!)� = 0.Remarks. In [72℄, the stability radius at a given frequen
y is de�nedfor a real un
ertainty that is a row ve
tor. The 
ase of a 
olumn ve
toris similar and yields De�nition 4.1. Note also that the stability radiusis dis
ontinuous only at the frequen
ies where M is real [71℄.4.2 LFT framework for the un
ertainty regionD and a 
ontroller CIn order to apply Proposition 4.1 to 
he
k the stabilization of all plantsin the un
ertainty region D des
ribed in Proposition 2.5 by some model-based 
ontroller C, the �rst step is to �nd the parti
ular set of loops[M(z) �℄ that 
orrespond to the 
losed-loop 
onne
tions of all plants inD with C. This �rst step 
an be a
hieved using the following theorem.Theorem 4.1 (LFT framework for D) Consider an un
ertainty re-gion D of plant transfer fun
tions given by (2.44) and a 
ontroller C(z)whose numerator and denominator are denoted X(z) and Y (z), re-spe
tively (C(z) = X(z)=Y (z)). The set of 
losed-loop 
onne
tions
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ondition for D[G(z; Æ) C℄ for all G(z; Æ) 2 D 
an be rewritten into the set of loops[MD �℄ whi
h obey the following system of equations� p = �qq =MD(z)pwhere the un
ertainty part � is a real 
olumn ve
tor of size k that variesin the un
ertainty domain: j�j2 < 1, and where the part MD(z) is a rowve
tor of size k de�ned as :MD(z) = �(ZD + X(ZN�eZD)Y+eX )T�11 + (ZD + X(ZN�eZD)Y+eX )Æ̂ ; (4.4)with T a square root of the matrix R de�ning U in (2.44) : R = T TT:Proof. The 
losed-loop 
onne
tion of C and a parti
ular plantG(z; Æ) =(e+ ZNÆ)=(1 + ZDÆ) in D (see (2.44)) is given by� y = e+ZNÆ1+ZDÆuu = �Cy (4.5)Let us rewrite (4.5) in a 
onvenient way for the LFT formulation:( y = (e+ (ZN�eZD)Æ1+ZDÆ )uu = �Cy (4.6)By introdu
ing two new signals q and p1, we 
an restate (4.6) as8>>>>><>>>>>: � qy � = H(z)z }| {� �ZD 1ZN � eZD e �� p1u �p1 = Æqu = �Cy (4.7)By doing so, we have isolated the un
ertainty ve
tor Æ from the knowntransfer matrix H(z) and the 
ontroller C(z), as is shown in Figure 4.2.The variables y and u are now eliminated from (4.7), yielding the fol-lowing system of equations representing a loop whi
h is of the type (4.1)required by Proposition 4.1.



A ne
essary and suÆ
ient robust stability 
ondition for D 57
δ

H(z)

-C(z)
u y

p1 q

Figure 4.2: Equivalent loop for [G(z; Æ) C℄8>><>>: p1 = Æqq = M1(z)z }| {(�ZD � C(ZN � eZD)1 + eC ) p1 (4.8)The system (4.8) is equivalent to the 
losed-loop 
onne
tion of aparti
ular G(z; Æ) in D with the 
ontroller C. In order to 
onsider the
losed-loop 
onne
tions for all plants in D, we have to 
onsider all Æ 2Rk�1 lying in the ellipsoid U given by:U = fÆ j (Æ � Æ̂)TR(Æ � Æ̂) < 1g: (4.9)This last expression is the un
ertainty domain of the real un
ertaintyve
tor Æ. This un
ertainty domain is not quite standard. Therefore, theset of loops [M1(z) Æ℄ with Æ 2 U 
an not be immediatly used in thisform in Proposition 4.1. A last step is then to normalize the un
ertaintydomain using a method presented e.g. in [72, 57℄ . Using R = T TT , wenow de�ne the real ve
tor � 2 Rk�1 as follows:
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ondition for D� �= T (Æ � Æ̂): (4.10)Using now (4.9) and (4.10), we haveÆ 2 U , �T� < 1() j�j2 < 1 (4.11)� is therefore an un
ertainty ve
tor with same stru
ture as Æ (i.e. � 2Rk�1) but with an un
ertainty domain as required by Proposition 4.1.The un
ertainty ve
tor Æ is therefore repla
ed by � in (4.8). For thispurpose, we �rst denote p �= �q. Sin
e Æ = Æ̂ + T�1�, we have� p1 = Æqq =M1(z)p1 , 8>>>><>>>>: p = �qq = M1T�11�M1Æ̂ p = MD(z)z }| {�(ZD + X(ZN�eZD)Y+eX )T�11 + (ZD + X(ZN�eZD)Y+eX )Æ̂ p(4.12)The set of loops [MD(z) �℄ for � 2 Rk�1 and j�j2 < 1 is thereforeequivalent to the set of 
losed-loop 
onne
tions [G(z; Æ) C℄ for all plantsG(z; Æ) in D. This 
ompletes the proof. �4.3 Robust stability 
ondition for the un
er-tainty region DTheorem 4.1 allows us to \transform" our problem of testing if the 
on-troller C stabilizes all the plants in the un
ertainty region D into theequivalent problem of testing if the set of loops [MD �℄ are stable forall real ve
tor � 2 Rk�1 su
h that j�j2 < 1. This equivalent problemis the one whi
h is treated by Proposition 4.1. Therefore, using Propo-sition 4.1 and Theorem 4.1, we 
an now formulate our main stabilitytheorem.Theorem 4.2 (robust stability 
ondition) Consider an un
ertaintyregion D of plant transfer fun
tions having the general form given in (2.44)and let C be a 
ontroller that stabilizes the 
enter G(z; Æ̂) of D. All theplants in the un
ertainty region D are stabilized by the 
ontroller C ifand only if max! �(MD(ej!)) � 1 (4.13)
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tively.Proof. MD(z) lies in RH1 sin
e its denominator is the denominatorof the sensitivity fun
tion of the 
losed loop [G(z; Æ̂) C℄ whi
h is sta-ble by assumption. Therefore, this theorem is a dire
t 
onsequen
e ofProposition 4.1 and Theorem 4.1. �This theorem gives a ne
essary and suÆ
ient 
ondition for the sta-bilization of all plants in D by a 
ontroller that has been designed fromthe 
hosen model Gmod. This ne
essary and suÆ
ient 
ondition involvesthe 
omputation at ea
h frequen
y of the stability radius �(MD(ej!)).This 
omputation is a
hieved using De�nition 4.1.Important remark. We now dis
uss why this ne
essary and suÆ
i-
ient robust stability result is not used to 
ompute a robust stabilitymeasure for the set D and why we have used the worst 
ase �-gap forthis purpose (see Chapter 3). Let us de�ne the following quantity:�min(D) = minC stabilizing G(z;Æ̂)�max! �(MD(ej!))� (4.14)Re
all that MD(z) is a fun
tion of C and of D. Using the de�nition of�min(D) and Theorem 4.2, we 
an state that all 
ontrollers stabilizingG(z; Æ̂) that lie infC j �min(D) � max! �(MD(ej!)) � 1g; (4.15)stabilize all plants in D. Moreover the set (4.15) is the set that 
on-tains all these robustly stabilizing 
ontrollers. As a 
onsequen
e, thequantity �min(D) is thus an indi
ator of how well the un
ertainty regionD is tuned for robustly stable 
ontroller design. Indeed, the smaller is�min(D), the larger is the set of robustly stabilizing 
ontrollers. More-over, it is a better indi
ator than the worst 
ase �-gap sin
e the set (4.15)
ontains all robustly stabilizing 
ontrollers as opposed to the set (3.16).However, to our knowledge, this indi
ator �min(D) has not been proved
omputable in polynomial time in the 
ase of an un
ertainty region likeD. That is why we have opted for the worst 
ase �-gap as measure ofrobust stability for the set D. It is nevertheless to be noted that our
urrent resear
h aims at applying the results of [73℄ to 
ompute �min(D).
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ondition for D4.4 Simulation ExampleTo illustrate our results, we present an example of 
ontroller validationfor a model identi�ed in 
losed-loop. Let us 
onsider the following truesystem G0 with an Output Error stru
ture:y = G0z }| {0:1047z�1 + 0:0872z�21� 1:5578z�1 + 0:5769z�2 u+ e(t);where e(t) is a unit-varian
e white noise. The sampling time is 0.05se
ond.Validation experiment. Let us perform a validation experiment in
losed-loop using the indire
t approa
h (see Se
tion 2.2.4). Let us thusidentify an unbiased model T (�̂) of the true 
losed-loop transfer fun
tionT 10 (de�ned in (2.29)) by 
olle
ting 1000 referen
e data r1(t) and outputdata y(t) on the 
losed loop made up of G0 and the 
ontroller K = 3 :u = 3(r � y). This 
ontroller stabilizes G0. It yields:T (�̂) = 0:3179z�1 + 0:2783z�21� 1:2129z�1 + 0:8251z�2The open-loop model G(�̂) 
orresponding to T (�̂) is equal toG(�̂) = 1K � T (�̂)1� T (�̂) = 0:1060z�1 + 0:0928z�21� 1:5308z�1 + 0:5467z�2Following the pro
edure presented in Se
tion 2.2.4.2, we 
an designan un
ertainty region Di
l from the estimated 
ovarian
e matrix P� ofthe parameters of the 
losed-loop model T (�̂). The region 
ontainingthe true system G0 with probability 0.98 is given byDi
l = fG(�) j G(�) = T (�)K(1� T (�)) and � 2 Ui
lgwhere Ui
l = f� j (� � �̂)TP�1� (� � �̂) < 12:6g. It has been shown inChapter 2 that Di
l 
an be expressed in the general stru
ture (2.44) ofthe un
ertainty regions delivered by PE identi�
ation.The worst 
ase �-gap ÆWC(G(�̂);Di
l) between the identi�ed modelG(�̂) and the set Di
l is here equal to 0.1015 whi
h is relatively small
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t to the optimal stability margin bopt(G(�̂)) = 0:5719. Theset C(G(�̂);Di
l) of G(�̂)-based 
ontrollers that are guaranteed to ro-bustly stabilize Di
l is thus large and we therefore de
ide to use G(�̂) asmodel for 
ontrol design and Di
l for the validation of the 
ontroller Cthat will be designed from G(�̂).Control design. The model G(�̂) dedu
ed from the identi�ed 
losed-loop transfer fun
tion is used to design a 
ontroller with a lead-lag �lter:C(z) = 1:8464 � 1:3647z�11� 0:4545z�1With this 
ontroller, the designed 
losed-loop [G(�̂) C℄ has a stabilitymargin of 57 degrees and a gain margin of 10dB. The 
ut-o� frequen
y!
 is equal to 0.5 whi
h 
orresponds to a real frequen
y of 11 rad=s.Before applying this 
ontroller C(z) to the true system, we verifywhether it stabilizes all plants in the un
ertainty region Di
l dedu
edfrom the validation experiment, using the results presented in this 
hap-ter.Validation of C for stability. For this purpose, we 
onstru
t therow ve
tor MDi
l(z) de�ned in Theorem 4.1 and we 
ompute the 
orre-sponding stability radius �(MDi
l(ej!)) at all frequen
ies. A

ording toDe�nition 4.1, we know that �(MDi
l(ej!)) has a di�erent expression atthe frequen
ies where MDi
l(ej!) is real. It o

urs here at ! = 0 and! = �. The stability radii at these two frequen
ies are:�(MDi
l(ej0)) = 0:0962 and �(MDi
l(ej�)) = 0:0340The stability radii at the other frequen
ies (i.e. in (0 �)) are plotted inFigure 4.3.The maximum over all frequen
ies in [0 �℄ is 0.1313. Sin
e thismaximum is smaller than 1, we 
on
lude that C(z) stabilizes all plants inDi
l and therefore also the true system G0. In other words, the 
ontrollerC(z) is validated for stability.4.5 Con
lusionsIn the previous 
hapter, an un
ertainty region D has been dedu
ed froma validation experiment (i.e. a PE identi�
ation pro
edure with unbi-
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Figure 4.3: �(MDi
l(ej!)) in (0 �)ased model stru
ture). In this 
hapter, we have developed a tool forthe robust stability analysis for the un
ertainty region D. This tool isa ne
essary and suÆ
ient 
ondition for the validation of a 
ontroller forstability that is to say a ne
essary and suÆ
ient 
ondition for the sta-bilization of all plants in D by this 
ontroller. This tool gives thereforea 
ondition for the stabilisation of the true system G0 by this 
ontroller(modulo the 
hosen probability level for the presen
e of G0 in D).The ne
essary and suÆ
ient 
ondition has been dedu
ed by re
astingthe general stru
ture of the un
ertainty region D in an LFT frameworktaking into a

ount the parametri
 des
ription of D and for whi
h thestability radius is exa
tly 
omputable.



Chapter 5Worst 
ase performan
ein DIn the previous 
hapter, we have developed a robust stability analysistool for the un
ertainty region D as delivered by a validation experi-ment. This tool takes the form of a ne
essary and suÆ
ient 
onditionfor the stabilization of all plants in D by a given 
ontroller. In this
hapter, we will develop a robust performan
e analysis tool. For thispurpose, we will again 
onsider an un
ertainty region D and a modelGmod from whi
h we have designed a 
ontroller C and we will proposean LMI-based optimization problem that 
omputes exa
tly the worst
ase performan
e a
hieved by the 
onsidered 
ontroller C over all plantsin the un
ertainty region D. The 
ontroller C is then said validated forperforman
e if the worst 
ase performan
e is better than some thresholdvalue. As in the previous 
hapter, the result presented in this 
hapterpertains to the validation of one spe
i�
 
ontroller. It is also importantto note that the worst 
ase performan
e is of 
ourse a lower bound ofthe performan
e a
hieved by C over the true system G0, sin
e G0 liesin D.Our robust performan
e analysis tool is thus based on the 
ompu-tation of the worst 
ase performan
e of a 
losed-loop made up of the
onsidered 
ontroller and a system in the un
ertainty region D. Theperforman
e of a parti
ular loop made up of the 
ontroller C and aplant in D is here de�ned as the largest singular value of a weightedversion of the matrix 
ontaining the four 
losed-loop transfer fun
tionsof this loop. Our de�nition of the worst 
ase performan
e is thus very63
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ase performan
e in Dgeneral and, by an appropriate 
hoi
e of the weights, allows one to de-rive most of the 
ommonly used worst 
ase performan
e measures su
has e.g. the largest modulus of the sensitivity fun
tion. Our 
ontributionis to show that the 
omputation of the worst 
ase performan
e 
an beformulated as an LMI-based optimization problem. The LMI formula-tion of the problem uses the fa
t that the un
ertainty part (i.e. the realparameter ve
tor) of the un
ertainty region D appears linearly in theexpression of both the numerator and the denominator of the systemsin the un
ertainty region D and, as a 
onsequen
e, also appears linearlyin the expression of the di�erent 
losed-loop transfer fun
tions.Our approa
h to 
ompute the worst 
ase performan
e di�ers signi�-
antly from the usual approa
h proposed in e.g. [33, 35℄. In these papers,the 
omputation of the worst 
ase performan
e in an un
ertainty regiondes
ribed by an LFT is performed using the 
omputation of a quantity�. The quantity � is an extension of the stru
tured singular value �.However, [33℄ and [35℄ only give a way to 
ompute this quantity � fora limited amount of parametri
 un
ertainties. The 
ase of an un
er-tainty given by a real ve
tor (su
h as in our un
ertainty region D) isnot ta
kled. This 
ase is nevertheless ta
kled in e.g. [5, page 402℄. In[5℄, the authors give a pro
edure to 
ompute the worst 
ase performan
ein un
ertainty regions de�ned by a real ve
tor that is 
onstrained to liein a hyper
ube. Their pro
edure, whi
h is an extension of a theorempresented in [18℄, is based on the fa
t that the diÆ
ult 
omputation ofthe worst 
ase performan
e in su
h un
ertainty region 
an be a
hievedwith a �xed number of simple optimization problems with one parame-ter. However, this pro
edure 
an not be used for the 
omputation of theworst 
ase performan
e in D sin
e the real ve
tor in D is 
onstrainedto lie in an ellipsoid and not in a hyper
ube. The 
ontribution of ourapproa
h is therefore to give a solution for the 
omputation of the worst
ase performan
e in the 
ase of an un
ertainty region de�ned by a realve
tor that is 
onstrained to lie in an ellipsoid (and that appears lin-early both in the numerator and the denominator of the systems in theun
ertainty region).Chapter outline. In Se
tion 5.1, we present the general 
riterion mea-suring the worst 
ase performan
e a
hieved by a 
ontroller over all plantsin an un
ertainty region D. In Se
tion 5.2, we show that more parti
-ular worst 
ase performan
e levels 
an be dedu
ed from this general
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riterion. In Se
tion 5.3, the LMI-based optimization problem allowingone to 
ompute the worst 
ase performan
e is presented. We �nish bya simulation example (Se
tion 5.4) and some 
on
lusions (Se
tion 5.5).5.1 The general 
riterion measuring the worst
ase performan
eAs said in the introdu
tion, the aim of this 
hapter is to �nd a pro
edureto 
ompute the worst 
ase performan
e a
hieved by a given 
ontroller Cover all plants in an un
ertainty region D having the general stru
turegiven in (2.44). In this se
tion, we will de�ne the 
riterion measuringthe worst 
ase performan
e. In order to de�ne this 
riterion, let us �rstde�ne the performan
e of a loop [C G℄.There is no unique way of de�ning the performan
e of a 
losed-loopsystem. However, most 
ommonly used performan
e 
riteria 
an bederived from some norm of a frequen
y weighted version of the matrixT (G;C) of the 
losed-loop system [C G℄ made up of G in feedba
k withthe 
ontroller C.De�nition 5.1 Given a plant G(z) and a stabilizing 
ontroller C(z),the performan
e of a 
losed-loop system [C G℄ is de�ned as the followingfrequen
y fun
tionJ(G;C;Wl;Wr; !) = �1 �WlT (G(ej!); C(ej!))Wr� (5.1)whereWl(z) = diag(Wl1;Wl2) andWr(z) = diag(Wr1;Wr2) are diagonalweights, �1(A) denotes the largest singular value of A, and T (G;C) isthe transfer matrix of the 
losed-loop system de�ned in (3.3).The worst 
ase performan
e 
riterion over all plants in an un
ertaintyregion D is then de�ned as follows.De�nition 5.2 Consider an un
ertainty region D of systems G(z; Æ)with Æ 2 U whose general stru
ture is given in (2.44). Consider also a
ontroller C(z). The worst 
ase performan
e a
hieved by this 
ontrollerat a frequen
y ! over all systems in D is de�ned as:JWC(D; C;Wl;Wr; !) = maxG(z;Æ)2D �1 �WlT (G(ej!; Æ); C(ej!))Wr� : (5.2)Note that JWC is a frequen
y fun
tion : it de�nes a template. JWC hasthus to be 
omputed at ea
h frequen
y.
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e in D5.2 More spe
i�
 worst 
ase performan
e levelsderived from the general 
riterionIn the previous se
tion, we have de�ned the performan
e of a 
losedloop and the worst 
ase performan
e a
hieved by a 
ontroller C over allplants in D in a very general way. In this se
tion, we will show that the
riterion (5.2) allows one to de�ne more spe
i�
 worst 
ase performan
elevels.In [25℄, the performan
e of a loop [C G℄ is de�ned as k WlT (G;C)Wr k1.In this framework, the nominal performan
e of the designed loop [C Gmod℄1is therefore k WlT (Gmod; C)Wr k1 and the worst 
ase performan
e foran un
ertainty region D is the maximum over all frequen
ies of the gen-eral 
riterion JWC(D; C;Wl;Wr; !).A more fundamental way of de�ning the performan
e of a 
losed loop[C G℄ is that proposed for the �rst time in [89℄. The performan
e 
anbe \measured" by the shape of the modulus of the frequen
y responseof the di�erent 
losed-loop transfer fun
tions (i.e. T11(G;C), T12(G;C),T21(G;C) and T22(G;C) de�ned in (3.3)). Let us take the example ofthe sensitivity fun
tion T22(G;C) to motivate this 
hoi
e. The modu-lus of the frequen
y response of T22(G;C) at a parti
ular frequen
y !gives the reje
tion rate of an output disturban
e at the frequen
y !.Furthermore, the bandwidth of this frequen
y response gives an idea ofthe reje
tion time for 
onstant disturban
e reje
tion. The importan
eof the resonan
e peak is also an indi
ation of the overshoot in 
onstantdisturban
e reje
tion.If the performan
e is de�ned as the modulus of the frequen
y re-sponse of one of the transfer fun
tions Tij (i; j=1,2), the worst 
aseperforman
e in the un
ertainty region D is de�ned as the largest mod-ulus, over all G(z; Æ) 2 D, of the 
orresponding 
losed-loop transferfun
tion Tij . Let us now de�ne this worst 
ase performan
e related toTij (i; j=1,2) more formally.De�nition 5.3 (The worst 
ase performan
e for Tij) Consider anun
ertainty region D given by (2.44) and 
ontaining all systems G(z; Æ)with Æ 2 U . Consider also a 
ontroller C(z) and the 
losed-loop transfer1Re
all that Gmod is the model from whi
h we have designed C.
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tion Tij (i; j=1,2) de�ned in (3.3). The worst 
ase performan
e forTij is the following frequen
y fun
tion :tD(!; Tij) = maxG(z;Æ)2D ��Tij(ej!; Æ)�� ; (5.3)where Tij(z; Æ) �= Tij(G(z; Æ); C(z)) and jAj denotes the modulus of A.For instan
e, if we 
hoose the sensitivity fun
tion T22, tD(!; T22)provides the lowest reje
tion rate of a perodi
 output disturban
e at !,the minimal bandwidth and the maximal resonan
e peak over the setof 
losed-loop systems 
omposed of the 
ontroller C and all plants inD. These worst 
ase values must be 
ompared with the stati
 error,the bandwidth and the resonan
e peak of the sensitivity fun
tion of thedesigned 
losed loop [C Gmod℄.The worst 
ase performan
e for Tij 
an be derived from the 
ompu-tation of the general 
riterion de�ned in (5.2). This property is summa-rized in the following proposition whose proof is trivial.Proposition 5.1 The worst 
ase performan
e for the 
losed-loop trans-fer fun
tion Tij i.e. tD(!; Tij) is equal to the general 
riterion JWC whenthe following weights are used.Wl = � f(i) 00 1� f(i) � Wr = � f(j) 00 1� f(j) � (5.4)where f(x) = 1 if x = 1 and f(x) = 0 if x = 2.5.3 Computation of the general 
riterionThe general 
riterion measuring the worst 
ase performan
e level hasbeen de�ned in Se
tion 5.1. In Se
tion 5.2, more spe
i�
 worst 
aseperforman
e levels have been shown to be derivable from this general
riterion by appropriately 
hoosing the diagonal weights Wr and Wl.We now present a pro
edure for the 
omputation of the general 
riterionJWC(D; C;Wl;Wr; !) at a given frequen
y !. This 
omputation boilsdown to an optimization problem involving Linear Matrix Inequality(LMI) 
onstraints [17℄, as shown in the following theorem.



68 Worst 
ase performan
e in DTheorem 5.1 Consider an un
ertainty region D de�ned in (2.44) anda 
ontroller C(z) = X(z)=Y (z) 2. Then, at frequen
y !, the 
riterionfun
tion JWC(D; C;Wl;Wr; !) is obtained asJWC(D; C;Wl;Wr; !) = p
opt; (5.5)where 
opt is the optimal value of 
 for the following standard 
onvexoptimization problem involving LMI 
onstraints evaluated at !:minimize 
over 
; �subje
t to � � 0 and� Re(a11) Re(a12)Re(a�12) Re(a22) �� � � R �RÆ̂(�RÆ̂)T Æ̂TRÆ̂ � 1 � < 0 (5.6)where� a11 = (Z�NW �l1Wl1ZN + Z�DW �l2Wl2ZD)� 
(QZ�1Z1)� a12 = Z�NW �l1Wl1e+W �l2Wl2Z�D � 
(QZ�1 (Y + eX))� a22 = e�W �l1Wl1e+W �l2Wl2 � 
(Q(Y + eX)�(Y + eX))� Q = 1=(X�W �r1Wr1X + Y �W �r2Wr2Y )� Z1 = XZN + Y ZD:Proof. In order to ease the establishment of the proof, we rewrite theweighted matrix Tw(z; Æ) �= WlT (G(z; Æ); C(z))Wr , using the de�nitionof the 
losed-loop transfer matrix T in (3.3) and the expression of G(z; Æ)in (2.44):Tw(z; Æ) = � Wl1X(e+ ZNÆ)Wr1 Wl1Y (e+ ZNÆ)Wr2Wl2X(1 + ZDÆ)Wr1 Wl2Y (1 + ZDÆ)Wr2 �Y + eX + (XZN + Y ZD)Æ (5.7)It is important to note that Tw(z; Æ) is of rank one. As a result (5.7) 
anbe written as follows:2X(z) and Y (z) are the polynomials 
orresponding to the numerator and to thedenominator of C(z), respe
tively
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ase performan
e in D 69Tw(z; Æ) =  Wl1(e+ZNÆ)Y+eX+Z1ÆWl2(1+ZDÆ)Y+eX+Z1Æ !� XWr1 YWr2 � (5.8)with Z1 = XZN + Y ZD. Using the above introdu
ed notations, we 
annow state that proving Theorem 5.1 is equivalent to proving that thesolution 
opt of the LMI problem (5.6), evaluated at !, is su
h that:p
opt = maxÆ2U �1(Tw(ej!; Æ))() 
opt = maxÆ2U �1(Tw(ej!; Æ)�Tw(ej!; Æ))where U = fÆ j (Æ�Æ̂)TR(Æ�Æ̂) < 1g, and where �1(A) and �1(A) denotethe largest singular value and the largest eigenvalue of A, respe
tively.An equivalent and 
onvenient way of restating the problem of 
om-puting maxÆ2U �1(Tw(ej!; Æ)�Tw(ej!; Æ)) is as follows:minimize 
 su
h that �1(Tw(ej!; Æ)�Tw(ej!; Æ)) � 
 < 0 8Æ 2 U:Sin
e Tw(ej!; Æ) has rank one, we have:�1(Tw(ej!; Æ)�Tw(ej!; Æ)) � 
 < 0() Wl1(e+ZNÆ)Y+eX+Z1ÆWl2(1+ZDÆ)Y+eX+Z1Æ !� Wl1(e+ZN Æ)Y+eX+Z1ÆWl2(1+ZDÆ)Y+eX+Z1Æ ! (X�W �r1Wr1X+Y �W �r2Wr2Y )�
 < 0()0B� Wl1(e+ZNÆ)Y+eX+Z1ÆWl2(1+ZDÆ)Y+eX+Z1Æ1 1CA�� I2 00 �
Q �0B� Wl1(e+ZNÆ)Y+eX+Z1ÆWl2(1+ZDÆ)Y+eX+Z1Æ1 1CA < 0 (5.9)where Q = 1=(X�W �r1Wr1X + Y �W �r2Wr2Y ). By pre-multiplying (5.9)by (Y + eX + Z1Æ)� and post-multiplying the same expression by (Y +eX + Z1Æ), we obtain:0� Wl1(e+ ZNÆ)Wl2(1 + ZDÆ)Y + eX + Z1Æ 1A�� I2 00 �
Q �0� Wl1(e+ ZNÆ)Wl2(1 + ZDÆ)Y + eX + Z1Æ 1A < 0; (5.10)whi
h is equivalent to the following 
onstraint on Æ with variable 
 :
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ase performan
e in D� Æ1 ��� a11 a12a�12 a22 �� Æ1 � < 0; (5.11)where a11 = (Z�NW �l1Wl1ZN + Z�DW �l2Wl2ZD)� 
(QZ�1Z1)a12 = Z�NW �l1Wl1e+W �l2Wl2Z�D � 
(QZ�1 (Y + eX))a22 = e�W �l1Wl1e+W �l2Wl2 � 
(Q(Y + eX)�(Y + eX)):Sin
e Æ is real, it 
an be shown that (5.11) is equivalent with (Æ)z }| {� Æ1 �T � Re(a11) Re(a12)Re(a�12) Re(a22) �� Æ1 � < 0 (5.12)This last expression is equivalent to stating that �1(Tw(ej!; Æ)�Tw(ej!; Æ))�
 < 0 for a parti
ular Æ in U . However, this must be true for all Æ 2 U .Therefore (5.12) must be true for all Æ su
h that�(Æ)z }| {� Æ1 �T � R �RÆ̂(�RÆ̂)T Æ̂TRÆ̂ � 1 �� Æ1 � < 0 (5.13)whi
h is equivalent to the statement \Æ 2 U".Let us now re
apitulate. Computing maxÆ2U �1(Tw(ej!; Æ)�Tw(ej!; Æ))is equivalent to �nding the smallest 
 su
h that  (Æ) < 0 for all Æfor whi
h �(Æ) < 0. By the S pro
edure [55, 17℄, this problem isequivalent to �nding the smallest 
 and a positive s
alar � su
h that (Æ)� ��(Æ) < 0, for all Æ 2 Rk�1, whi
h is pre
isely (5.6). To 
ompletethis proof, note that sin
e �1(Tw(ej!; Æ)�Tw(ej!; Æ)) = �21(Tw(ej!; Æ)),the value maxÆ2U �1(Tw(ej!; Æ)) at ! is equal to p
opt, where 
opt is theoptimal value of 
. �5.4 Simulation exampleIn order to illustrate the results of this 
hapter, let us re
onsider theexample presented in Se
tion 4.4 of the previous 
hapter. Re
all thatthe 
ontroller C designed from the identi�ed model G(�̂) has alreadybeen validated for stability. Indeed, we have 
he
ked that it stabilizes
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ase performan
e in D 71all systems in the un
ertainty region Di
l dedu
ed from the validationexperiment. Let us now validate this 
ontroller C for performan
e. Sta-bilization does indeed not imply good performan
e with all plants inDi
l (in
luding the true system).In order to verify that C gives satisfa
tory performan
e with allplants in Di
l, we 
hoose the sensitivity fun
tion T22 as performan
e in-di
ator and we 
ompute the worst 
ase performan
e level tDi
l(!; T22) forT22 at ea
h frequen
y. This 
an be done by 
omputing JWC(Di
l; C;Wl;Wr; !) using Theorem 5.1 with the parti
ular weights Wl = Wr =diag(0; 1). The worst 
ase modulus of all sensitivity fun
tions overDi
l is represented in Figure 5.1. In this �gure, the worst 
ase per-forman
e level tDi
l(!; T22) is 
ompared with the sensitivity fun
tionsof the designed 
losed loop [C G(�̂)℄ and of the a
hieved 
losed loop[C G0℄. From tDi
l(!; T22), we 
an �nd that the worst 
ase stati
 error(=tDi
l(0; T22)) resulting from a 
onstant disturban
e of unit amplitudeis equal to 0.1692, whereas this stati
 error is 0.0834 in the designed
losed-loop. The a
hieved stati
 error is 0.1017. Using tDi
l(!; T22), we
an also see that the bandwidth of !
 = 0:5 in the designed 
losed-loopis preserved for all 
losed loops with a plant in Di
l sin
e tDi
l(!; T22) isequal to 1 at !
 ' 0:5. The di�eren
e between the resonan
e peak ofthe designed sensitivity fun
tion ( i.e. max! k T22(G(�̂); C) k= 1:6184)and the worst 
ase reasonan
e peak a
hieved by a plant in Di
l ( i.e.max! tDi
l(!; T22) = 1:7075) also remains small. Note that the a
tuallya
hieved resonan
e peak ( i.e. max! k T22(G0; C) k) is equal to 1.6229.We may therefore 
on
lude that the 
ontroller C is validated forperforman
e sin
e the di�eren
e between the nominal and worst 
aseperforman
e level remains very small at every frequen
y. Sin
e the 
on-troller C has now been validated for stability and for performan
e, onewould 
on�dently apply the 
ontroller to the true system G0, assumingthat the nominal performan
e is judged to be satisfa
tory.5.5 Con
lusionsIn this 
hapter, we have developed a robust performan
e analysis tool forthe un
ertainty region D as delivered by a PE identi�
ation pro
edure.Our tool is based on the 
omputation of the worst 
ase performan
e
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OmegaFigure 5.1: tDi
l(!; T22) (solid) and modulus of the designed sensitivityfun
tion T22(G(�̂); C) (dashed) and a
tually a
hieved sensitivity fun
tionT22(G0; C) (dashdot)a
hieved by a given 
ontroller over all plants in su
h un
ertainty region.We have de�ned this worst 
ase performan
e in a very general way andhave shown that its 
omputation at ea
h frequen
y boils down to anLMI-based optimization problem.This worst 
ase performan
e is a lower bound for the performan
ea
hieved by the 
onsidered 
ontroller over the true system G0 (modulothe 
hosen probability level for the presen
e of G0 in D).



Chapter 6Pra
ti
al simulationexamplesLet us summarize what we have a
hieved until now. In Chapter 2, wehave dedu
ed an un
ertainty set D 
ontaining the true system at a 
er-tain probability level from a validation experiment i.e. a 
lassi
al PEidenti�
ation pro
edure. In Chapter 3, we have introdu
ed a robuststability measure of that un
ertainty set. This measure is 
onne
ted tothe size of the 
ontroller set that is guaranteed by the �-gap theory torobustly stabilize D and is therefore an indi
ator of how well the un-
ertainty region D is tuned for robust 
ontrol design. In Chapter 4 andChapter 5, we have presented a pro
edure to validate a 
ontroller forstability and for performan
e with respe
t to su
h un
ertainty regionD. We have indeed given a ne
essary and suÆ
ient 
ondition for thestabilization of all plants in D by a given 
ontroller and we have estab-lished an optimization problem in order to 
ompute exa
tly the worst
ase performan
e a
hieved by this 
ontroller over all plants in D.In this 
hapter, we present two illustrations of the pra
ti
al use that
ould be made of our results. As opposed to the examples presented inthe previous 
hapters, these are more realisti
 in the sense that they rep-resent real-life systems and the methodology is applied to these systems\from the beginning to the end". The �rst illustration is performed onthe widely publi
ized Landau ben
hmark transmission system [59℄. Thisben
hmark represents only one fa
et of a 
ontrol appli
ation, namely atra
king problem with a step disturban
e reje
tion obje
tive in an essen-tially noise-free environment. To make our presentation 
omplete, we73



74 Pra
ti
al simulation exampleshave also applied our methodology to a typi
al industrial pro
ess 
on-trol appli
ation, in whi
h the main obje
tive is sto
hasti
 disturban
ereje
tion. In the �rst illustration , we 
hoose the identi�ed model asmodel Gmod for 
ontrol design. In the se
ond illustration, the model for
ontrol design is given a-priori.6.1 Flexible transmission system6.1.1 Problem settingWe 
onsider as unknown true system the half-load model of the 
exi-ble transmission system used as a ben
hmark in a spe
ial issue of theEuropean Journal of Control: see [59℄.G0(z) = z�3 0:10276 + 0:18123z�11� 1:99185z�1 + 2:20265z�2 � 1:84083z�3 + 0:89413z�4, z�3B0(z)A0(z) :The sampling period is 0:05s. The output of the system is subje
t tostep disturban
es �ltered through H0(z) = 1A0(z) . This means that theplant 
an be seen as a nonstandard ARX system des
ribed byA0(z)y(t) = z�3B0(z)u(t) + p(t) (6.1)where u(t) is the input of the plant, y(t) its output and p(t) a sequen
eof step disturban
es with zero mean and varian
e �2p. From a sto
hasti
point of view, p(t) is equivalent, up to se
ond order moments, with1�(z)e(t) where �(z) = 1� z�1 and e(t) is a sequen
e of Gaussian whitenoise with zero mean and appropriate varian
e. Hen
e, a standard ARXdes
ription of the plant is given byA0(z)�(z)y(t) = z�3B0(z)�(z)u(t) + e(t); (6.2)and the standard predi
tion error identi�
ation algorithm for ARX mod-els 
an be used to identify the system, provided the data are pre�lteredby �(z).Obje
tive. Our obje
tive is to apply our methodology to the true
exible transmission system G0 in order to verify that a 
ontroller C,satisfying a number of spe
i�
ations with an identi�ed model, satis�esalso these spe
i�
ations with the unknown G0. These requirements are:



Pra
ti
al simulation examples 75� stability of the loop [C G0℄� a maximum value of less than 6 dB for the sensitivity fun
tionT22(G0; C) = 1=(1 +G0C).� reje
tion of the step output disturban
es p(t) �ltered by 1=A0within 1.2s (for 90% reje
tion of the measured peak values).These spe
i�
ations are some of the spe
i�
ations of the ben
hmark [59℄.6.1.2 Validation experimentSin
e the true system is unknown, a �rst step in our methodology isto perform a validation experiment on the true system G0 in order toidentify a model Gmod for the true system G0 and in order to 
onstru
tan un
ertainty region 
ontaining the true system G0 at a 
ertain prob-ability level, say 95%. We will here perform the validation experimentin 
losed loop using a dire
t approa
h (see Se
tion 2.2.4.1).In order to perform a validation in 
losed loop, we need to 
on-ne
t a 
ontroller K in feedba
k with G0. The 
ontroller K is here
hosen as the one obtained by Landau et al. using a 
ombined polepla
ement/sensitivity fun
tion shaping method [58℄. Its feedba
k partis des
ribed byK(z) = 0:401602 � 1:079378z�1 + 0:284895z�2 + 1:358224z�31� 1:031142z�1 � 0:995182z�2 + 0:752086z�3�0:986549z�4 � 0:271961z�5 + 0:306937z�6+0:710744z�4 � 0:242297z�5 � 0:194209z�6 � (6.3)It also has a feedforward part that we shall not 
onsider here (sin
e wewill ex
ite the 
losed-loop system with the signal r2(t) in Figure 2.1).The 
losed-loop system [K G0℄ is ex
ited by means of a referen
esignal r2(t) inje
ted at the input of G0 (see Figure 2.1). The signalr2(t) is 
hosen as a PRBS with varian
e �2r2 = 0:5541, while the outputstep disturban
es p(t) are simulated as a random binary sequen
e withvarian
e �2p = 0:01 and 
ut-o� frequen
y at ! = 0:1� (normalized fre-quen
y). A realization of r2(t) and p(t) are shown in Figure 6.1. Thedisturban
e p(t) is �ltered by 1=A0(z) and added to the output of thesystem. 256 data samples y(t) and u(t) (t = 1:::256) are measured, and
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data samplesFigure 6.1: A realization of r2(t) (dashed) and p(t) (solid)a model G(z; Æ̂) with the same ARX(4,2,3) stru
ture as G0 is identi�edafter pre�ltering these data by �(z):Gmod = G(z; Æ̂) = z�3 0:1016 + 0:1782z�11� 1:986z�1 + 2:187z�2 � 1:824z�3 + 0:8897z�4 :(6.4)This identi�ed model Gmod will be used in the sequel as nominal modelin order to �nd a 
ontroller C that satis�es the spe
i�
ations presentedat the end of Se
tion 6.1.1 when C is applied to Gmod.The estimated 
ovarian
e matrix of the parameter ve
torÆ̂ = � �1:986 2:187 �1:824 0:8897 0:1016 0:1782 �T is given by:
PÆ = 10�3�0BBBBBB� 0:0840 �0:1166 0:1024 �0:0532 �0:0062 �0:0027�0:1166 0:2145 �0:1966 0:1009 0:0057 0:00080:1024 �0:1966 0:2184 �0:1197 �0:0074 �0:0041�0:0532 0:1009 �0:1197 0:0853 0:0063 0:0037�0:0062 0:0057 �0:0074 0:0063 0:0064 0:0021�0:0027 0:0008 �0:0041 0:0037 0:0021 0:0061

1CCCCCCA :(6.5)The 95% un
ertainty region D
l around Gmod = G(z; Æ̂) 
an be ex-
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l = fG(z; Æ) j G(z; Æ) = ZNÆ1 + ZDÆ with Æ 2 U
lg (6.6)U
l = fÆ 2 R6�1 j (Æ � Æ̂)TP�1Æ (Æ � Æ̂) < 12:6g; (6.7)where ZN (z) = � 0 0 0 0 z�3 z�4 �ZD(z) = � z�1 z�2 z�3 z�4 0 0 � :The size � of the ellipsoid U
l is here equal to 12.6 sin
e Pr(�2(6) <12:6) = 0:95. This un
ertainty region D
l 
ontains the true system1sin
e we have that�Æ0 � Æ̂�T P�1Æ �Æ0 � Æ̂� = 4:7050 < 12:6where Æ0 = � �1:99185 2:20265 �1:84083 0:89413 0:10276 0:18123 �Tdenotes the parameter ve
tor of the true system:G0 = ZNÆ01 + ZDÆ0 : (6.8)6.1.3 Robust stability measure of D
lThe results of Chapter 3 are now used in order to verify if D
l isstabilized by a large set of 
ontrollers stabilizing the identi�ed modelGmod = G(z; Æ̂). This 
an be a
hieved by 
omputing the worst 
ase �-gap ÆWC(Gmod;D
l) between the identi�ed model Gmod and the plantsin the set D
l. For this purpose, we �rst 
ompute the worst 
ase 
hordaldistan
es �WC(Gmod(ej!);D
l) at ea
h frequen
y using the LMI toolsdeveloped in Se
tion 3.3. The worst 
ase 
hordal distan
es are repre-sented in Figure 6.2 where they are 
ompared with the a
tual 
hordaldistan
es �(Gmod(ej!); G0(ej!)) between the identi�ed model Gmod andthe true system G0.A

ording to Lemma 3.1, sin
e Gmod is the 
enter of D
l, we 
anderive the worst 
ase �-gap ÆWC(Gmod;D
l) from the worst 
hordal dis-tan
es as follows:ÆWC(Gmod;D
l) = max! �WC(Gmod(ej!);D
l) = 0:1085:1In pra
ti
e, G0 is unknown.
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OmegaFigure 6.2: �WC(Gmod(ej!);D
l) (solid) and �(Gmod(ej!); G0(ej!))(dashdot) at ea
h frequen
yThe optimal stability margin bopt(Gmod) 
an also be 
omputed using (3.6)and is here equal to 0.4650. We may therefore 
on
lude that the setC(Gmod;D
l) of Gmod-based 
ontrollers that are guaranteed by the �-gap theory to robustly stabilize D
l, is relatively large. We are thereforein
ited to keep the pair fGmod D
lg in order to make the design of the
ontroller C and to validate this 
ontroller for stability and for perfor-man
e.6.1.4 Control design based on GmodWe will now use the identi�ed model Gmod in order to �nd a 
ontrollerC that satis�es the spe
i�
ations presented at the end of Se
tion 6.1.1when C is applied to Gmod. For this purpose, we 
an e.g. use therobust 
ontroller for 
exible transmission systems obtained by Nordinand Gutman using QFT design [67℄:C(z) = 0:0355 + 0:0181z�11� z�1 � 18:8379 � 43:4538z�1 + 26:4126z�21 + 0:6489z�1 + 0:1478z�2�0:5626 � 0:7492z�1 + 0:3248z�21� 1:4998z�1 + 0:6379z�2 � 1:0461 + 0:5633z�21 + 0:4564z�1 + 0:1530z�2�1:3571 � 1:0741z�1 + 0:4702z�21� 0:6308z�1 + 0:3840z�2 :
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ti
al simulation examples 79The 
ontroller C has thus not really been designed from the identi�edmodel Gmod, but this 
ontroller satis�es nevertheless all spe
i�
ationswith the model Gmod.We will now verify whether this 
ontroller satis�es these spe
i�
a-tions with all plants inD
l (and therefore also with the true system G0)2.Let us begin by the validation of C for stability.
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OmegaFigure 6.3: �(MD
l(ej!)) at ea
h frequen
y6.1.5 Controller validation for stabilityFollowing the pro
edure of Chapter 4, we build the dynami
 ve
torMD
l �ej!� 
orresponding to the 
andidate 
ontroller C, and we 
om-pute its stability radius at ea
h frequen
y a

ording to Theorem 4.2.These stability radii are represented in Figure 6.3. The maximum valueof the stability radius ismax! �(MD
l(ej!)) = 0:23842Sin
e we have 
hosen a 
ontroller C that satis�es the spe
i�
ation of the ben
h-mark [59℄, we know that the spe
i�
ations will be satis�ed with G0. However, thisfa
t does not imply that C will satisfy these spe
i�
ations with all plants in D
l, andour obje
tive in this illustration is not to design a robust 
ontroller from Gmod, butto show that our methodology allows one to verify the spe
i�
ations about the loop[C G0℄ using 
ontroller validation pro
edures based on the un
ertainty set D
l.
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e this maximum value is smaller than one, we may 
on
lude thatthe 
ontroller C stabilizes all plants in the un
ertainty set D
l. Con-sequently, we 
an also guarantee that the \to-be-validated" 
ontrollerC(z) stabilizes the true 
exible transmission system G0. The �rst re-quirement presented at the end of Se
tion 6.1.1 (i.e. the stability of thea
hieved loop [C G0℄) is thus satis�ed.6.1.6 Controller validation for performan
eThe se
ond requirement presented at the end of Se
tion 6.1.1 was thatthe designed 
ontroller should ensure a maximum value of less than 6 dBfor the sensitivity fun
tion. The third requirement was that the step dis-turban
es p(t) should be removed within 1.2s. The third requirement isthus a time-domain spe
i�
ation. In order to may verify this last spe
-i�
ation within our frequen
y domain framework, let us translate thetime-domain spe
i�
ation into a frequen
y domain spe
i�
ation. Us-ing the approximation of the se
ond order system, we 
an assume thatthe reje
tion time of a step disturban
e is inversely proportional to the
ut-o� frequen
y of the transfer fun
tion between the 
onsidered distur-ban
e and the output of the system. In this 
ase, this transfer fun
tionTpy(G0; C) is given by:Tpy(G0; C) = 1A0 � 11 +G0C = 11 + (ZD + ZNC)Æ0where we have used the fa
t that G0 = B0=A0 = (ZNÆ0)=(1 + ZDÆ0)(see (6.8)). Sin
e we know that the nominal transfer fun
tion Tpy(Gmod; C)satis�es the spe
i�
ation of a reje
tion time of 1.2s, the third require-ment 
an be stated as follows: the 
ut-o� frequen
y of Tpy(G0; C) mustbe 
lose to the 
ut-o� frequen
y of Tpy(Gmod; C).Sin
e the true system is unknown, we will verify whether the 
on-troller C a
hieves these requirements with all systems in D
l. For thispurpose, we 
hoose two di�erent worst 
ase performan
e 
riteria. The�rst one is the largest modulus of the sensitivity fun
tion T22 de�nedin (5.3) i.e. tD
l(!; T22). This worst 
ase performan
e 
riterion 
an be
omputed using the LMI pro
edure presented in Theorem 5.1. The se
-ond worst 
ase performan
e 
riterion tD
l(!; Tpy) is the largest modulusof the transfer fun
tion Tpy:tD
l(!; Tpy) = maxG(ej! ;Æ)2D ���� 11 + (ZD(ej!) + ZN (ej!)C(ej!))Æ ����
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an not be 
omputed by the LMI pro
edure of Theo-rem 5.1. However, it is easy to develop a similar LMI pro
edure in orderto 
ompute tD
l(!; Tpy) exa
tly. Using these worst 
ase performan
e
riteria, the 
ontroller C is termed validated for performan
e if� max! tD
l(!; T22) < 6 dB� the minimal 
ut-o� frequen
y of Tpy(G(z; Æ); C) for a plant G(z; Æ)in D
l that 
an be dedu
ed from tD
l(!; Tpy), is 
lose to the 
ut-o�frequen
y of Tpy(Gmod; C).Let us now 
ompute these 
riteria. Figure 6.4 presents tD
l(!; T22),and 
ompares it with the nominal sensitivity jT22(Gmod; C)j and thea
hieved sensitivity jT22(G0; C)j. Figure 6.5 does the same for the trans-fer fun
tion Tpy. In Figure 6.4, we observe thatmax! tD
l(!; T22) = 5 dB < 6 dB:In Figure 6.5, we observe that the minimal 
ut-o� frequen
y of Tpy(G(z; Æ);C) for a plant G(z; Æ) in D
l is equal to 0.014 (tD
l(!; Tpy) = 0 dB in! = 0:014) and that the 
ut-o� frequen
y of Tpy(Gmod; C) is equal to0.0153. The minimal 
ut-o� frequen
y is thus very 
lose to the 
ut-o�frequen
y of Tpy(Gmod; C). The 
ontroller C is thus validated for per-forman
e. In other words, the 
ontroller C satis�es both performan
espe
i�
ations with all plants in D
l. As a 
onsequen
e, the 
ontroller Cis also guaranteed to a
hieve these performan
e requirements with thetrue 
exible transmission system G0.With the 
ontroller validation pro
edures for stability and for per-forman
e, we have thus been able to prove that the 
ontroller C \de-signed from Gmod", a
hieves the spe
i�
ations presented at the end ofSe
tion 6.1.1 with the true system G0. Our obje
tive is thus rea
hed.6.1.7 Con
lusionsLet us summarize what we have a
hieved in this se
tion. Our obje
tivewas to apply our methodology to the true 
exible transmission systemG0 in order to verify that a 
ontroller C, satisfying a number of spe
i�-
ations with the identi�ed model, satis�es also these spe
i�
ations withthe unknown G0. For this purpose, we have performed a validation ex-periment on the true system yielding a model Gmod and an un
ertainty
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Figure 6.4: tD
l(!; T22) (solid), jT22(G0; C)j (dashed), jT22(Gmod; C)j(dashdot) at ea
h frequen
yregion D
l 
ontaining the true system (with a probability of 95%). Therelatively small worst 
ase �-gap between the model and the plants inD
l has in
ited us to keep the pair fGmod D
lg in order to design a
ontroller and to validate this 
ontroller for stability and performan
e.Then, a robust 
ontroller C that satis�es the performan
e spe
i�
ationswith the model Gmod, has been 
hosen. Using our 
ontroller validationpro
edures, we have been able to prove that the 
hosen 
ontroller C alsoa
hieves the desired level of performan
e with all plants in the un
er-tainty set D
l. As a 
onsequen
e, the 
ontroller C 
an be applied to thetrue 
exible transmission system sin
e we are assured that the a
hievedperforman
e will be satisfa
tory (modulo the probability level of 95%for the presen
e of G0 in D
l).6.2 Ferrosili
on produ
tion pro
essThe �rst illustration was representative of a me
hani
al engineering 
on-trol problem, in whi
h there was no sto
hasti
 noise, and where the 
on-trol obje
tive was one of tra
king and reje
tion of step disturban
es. Inorder to illustrate the generality of our validation theory, we now presentan appli
ation that is representative of industrial pro
ess 
ontrol appli-
ations, in whi
h the 
ontrol obje
tive is one of reje
tion of sto
hasti
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Figure 6.5: tD
l(!; Tpy) (solid), jTpy(G0; C)j (dashed), jTpy(Gmod; C)j(dashdot) at ea
h frequen
ydisturban
es. In this se
ond illustration, we will assume that the modelGmod for 
ontrol design has been given a-priori.6.2.1 Problem settingThe plant model and the 
ontrollers used in this simulation example aretaken from a paper by Ingason and Jonsson [54℄. Ferrosili
on is a two-phase mixture of the 
hemi
al 
ompound FeSi2 and the element sili
on.The balan
e between sili
on and iron is regulated around 76% of thetotal weight in sili
on, 22% in iron and 2% in aluminium by adjustingthe input of raw materials to the furna
e. Those are 
harged bat
hwizeto the top of the furna
e, ea
h bat
h 
onsisting of a �xed amount ofquartz (SiO2) and a variable quantity of 
oal/
oke (C) and iron oxyde(Fe2O3). The quantity of 
oal/
oke whi
h is burned in the furna
e doesnot in
uen
e the sili
on ratio in the mixture, hen
e the 
ontrol input isthe amount of iron oxyde.The authors of [54℄ have obtained the following ARX model for thepro
ess: y(t) + ay(t� 1) = bu(t� 1) + d+ e(t) (6.9)where the sampling period is one day, y(t) is the per
entage of sili
onin the mixture that must be regulated around 76%, u(t) is the quantity
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onstant and e(t) is a sto
hasti
 disturban
e. The nominal values of theparameters and their standard deviations are:a = �0:44; b = �0:0028; d = 46:1;�a = 0:07; �b = 0:001; �d = 5:6: (6.10)Here, for the sake of illustrating our theory, we make the assumptionthat the true system isG0(z) = b0z�11 + a0z�1 = �0:0032z�11� 0:34z�1 ;H0(z) = 11 + a0z�1 = 11� 0:34z�1 ; d0 = 44:The nominal model 
hosen for 
ontrol design is the one obtained byIngason and Jonsson [54℄:Gmod(z) = bz�11 + az�1 = �0:0028z�11� 0:44z�1 ;Hmod(z) = 11 + az�1 = 11� 0:44z�1 ; d = 46:1;This model Gmod was used by the authors of [54℄ to 
ompute a GPC
ontroller. The 
ontrol law that minimizes the 
ost fun
tionJu = E 24 2Xj=1 (y(t+ j)� r(t+ j))2 + 2Xj=1 � (�u(t+ j � 1))235where �(z) = 1� z�1, is given byu(t) = � 1 0 � �HTH + F T�F ��1 �HT (w(t)� v(t)) � F T�g(t)�(6.11)where H = � b 0�ab b � ;F = � 1 0�1 1 � ;v(t) = � �ay(t) + da2y(t)� ad+ d � ;w(t) = � r(t) r(t) �T ;g(t) = � �u(t� 1) 0 �T ;� = �I:
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ontroller is a 
ontroller C�(z)made up of three parts:u(t) = C�(z)0� r(t)�y(t)1 1A = � Cr�(z) Cy�(z) Cd�(z) �0� r(t)�y(t)1 1A(6.12)whereCr�(z) = b3 + 2b�� ab�(b4 + 3b2�+ a2b2�+ �2 � 2ab2�)� (b2�+ �2)z�1 ;Cy�(z) = � ab3 + ab�� a2b�+ a3b�(b4 + 3b2�+ a2b2�+ �2 � 2ab2�)� (b2�+ �2)z�1 ;Cd�(z) = � b3 + b�+ b�(1� a)2(b4 + 3b2�+ a2b2�+ �2 � 2ab2�)� (b2�+ �2)z�1 dThe part Cd�(z) is the part of the 
ontroller whose obje
tive is to reje
tthe 
onstant perturbation d0 and the part Cy�(z) is the only part whi
his important for stability analysis. The referen
e signal r(t) is generally
onstant and given by r(t) = 76.Obje
tive. Our obje
tive is to analyze the robustness properties ofthe GPC 
ontroller C�(z) with � = 0:0007 in order to may apply this
ontroller to the true system G0 with 
on�den
e that is to say with theassuran
e that the behaviour of the loop [C�=0:0007 G0℄ will be satisfa
-tory with respe
t to the following requirements i.e.� stability of the loop [C�=0:0007 G0℄� reje
tion of the sto
hasti
 noise v(t) = H0e(t).The 
ontroller C a
hieves of 
ourse these spe
i�
ations with the modelGmod.6.2.2 Validation experimentsSin
e the true system G0 is unknown, we need to perform a validationexperiment in order to design an un
ertainty region 
ontaining the truesystem. In fa
t, we will here perform two validation experiments: onein open-loop and the other one using dire
t 
losed-loop identi�
ation.
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al simulation examplesOpen-loop validation experimentThe \true plant" model (G0; H0) was ex
ited with u(t) 
hosen as aPRBS with varian
e �2uol = 20, whi
h is the maximum input varian
eadmissible for this pro
ess [54℄. The noise e(t) was 
hosen as a Gaussianwhite noise sequen
e with varian
e �2e = 0:078, whi
h 
orresponds tothe noise a
ting on the real pro
ess as shown by experiments made bythe authors of [54℄. The varian
e of the output was then �2yol = 0:0884.Re
all that the validation experiment, i.e. the 
onstru
tion of an un
er-tainty set Dol, 
onsists of performing a PE identi�
ation using an un-biased model stru
ture. Therefore, 300 input-output data samples were
olle
ted, 
orresponding approximately to one year of measurements.These data were used to identify an ARX model with exa
t stru
tureG(z; Æol) = Æ2z�11 + Æ1z�1 ; H(z; Æol) = 11 + Æ1z�1 : (6.13)We foundÆ̂ol = � Æ̂1̂Æ2 � = � �0:3763�0:0073 � ; PÆol = � 2:8131 � 10�3 �1:2784 � 10�5�1:2784 � 10�5 1:4887 � 10�5 � ;(6.14)We then design the 95% un
ertainty region Dol around G(z; Æ̂ol) follow-ing the pro
edure of Se
tion 2.2.2:Dol = fG(z; Æ) j G(z; Æ) = ZNÆ1 + ZDÆ with Æ 2 UolgUol = fÆ 2 R2�1 j (Æ � Æ̂ol)TP�1Æol (Æ � Æ̂ol) < 5:99g;where ZN (z) = � 0 z�1 � and ZD(z) = � z�1 0 � :The size � of the ellipsoid Uol is here equal to 5.99 sin
e Pr(�2(2) <5:99) = 0:95. The obtained un
ertainty region Dol 
ontains as well thein pra
ti
e unknown true system G0 as the 
hosen model Gmod.Closed-loop validation experimentThe 
losed-loop validation was performed with a sub-optimal GPC 
on-troller obtained by setting � = 0:001 in (6.12). We added a PRBS signalto the 
onstant referen
e r(t) = 76 su
h that we obtained �2u
l = 20.
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e of r(t) was then �2r = 0:014, the noise e(t) having the sameproperties as in open-loop validation. With these settings, the outputvarian
e was �2y
l = 0:0880. Observe that the input varian
e is the sameas in open loop, and that the output varian
e is very 
lose to that ofthe open-loop experiment. Again, 300 input-output data samples were
olle
ted and used to identify an ARX model with the same stru
ture asin open-loop validation (6.13), using a dire
t predi
tion error method.We foundÆ̂
l = � Æ̂1̂Æ2 � = � �0:3575�0:0067 � ; PÆ
l = � 2:8323 � 10�3 �8:7845 � 10�6�8:7845 � 10�6 6:2416 � 10�6 � :(6.15)We then design the 95% un
ertainty region D
l around G(z; Æ̂
l) follow-ing the pro
edure for dire
t 
losed-loop identi�
ation of Se
tion 2.2.4.1:D
l = fG(z; Æ) j G(z; Æ) = ZNÆ1 + ZDÆ with Æ 2 U
lgU
l = fÆ 2 R2�1 j (Æ � Æ̂
l)TP�1Æ
l (Æ � Æ̂
l) < 5:99g;whith the same ZN and ZD as in Dol. As Dol, this un
ertainty region D
l
ontains as well the in pra
ti
e unknown true system G0 as the modelGmod.6.2.3 Comparison of Dol and D
lThe worst 
ase �-gap is now used to 
ompare the two un
ertainty setsdedu
ed from the two validation experiments. For this purpose, we�rst 
ompute the worst 
ase 
hordal distan
es at ea
h frequen
y for Doland D
l using the LMI tools developed in Se
tion 3.3. A

ording toLemma 3.1 and sin
e Gmod lies in both un
ertainty sets, we 
an derivethe worst 
ase Vinni
ombe distan
es from the worst 
hordal distan
esas follows:ÆWC(Gmod;Dol) = max! �WC(Gmod(ej!);Dol) = 0:0225ÆWC(Gmod;D
l) = max! �WC(Gmod(ej!);D
l) = 0:0156Sin
e the optimal stability margin bopt(Gmod) is equal to 0.99, the setsC(Gmod;Dol) and C(Gmod;D
l) of 
ontrollers stabilizing Gmod that areguaranteed to robustly stabilize Dol and D
l, respe
tively, are relatively
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ase �-gaps ÆWC(Gmod;Dol) and ÆWC(Gmod;D
l)are very small with respe
t to bopt(Gmod). Consequently, both un
er-tainty sets are relatively well tuned for robustly stable 
ontroller designbased on Gmod. We therefore de
ide to keep and to apply the 
ontrollervalidation pro
edures to both un
ertainty sets.6.2.4 Controller validation for stabilitySuÆ
ient testIn this illustration, we also 
onsider the suÆ
ient robust stability 
on-dition that 
an be dedu
ed from the worst 
ase �-gap in order to showthat this 
ondition 
an be 
onservative with respe
t to the ne
essaryand suÆ
ient 
ondition developed in Chapter 4.The 
ontroller C�=0:0007 a
hieves a very small stability margin bGmodCy�=0:0007withGmod equal to 0.0169. The 
ontroller C�=0:0007 lies thus in C(Gmod;D
l)but not in C(Gmod;Dol) sin
e we have thatÆWC (Gmod; Dol) > bGmod C�=0:0007 = 0:0169 > ÆWC (Gmod; D
l) : (6.16)Therefore, from this suÆ
ient test, we 
an 
on
lude that C�=0:0007 sta-bilizes all plants in the set D
l. To make an undoubted statement aboutthe set Dol, we will need to use the ne
essary and suÆ
ient test devel-oped in Chapter 4.Ne
essary and suÆ
ient testWe �rst verify if C�=0:0007 stabilizes the 
enters of Dol and D
l. Sin
e itis the 
ase, we build the dynami
 ve
torsMDol �ej!� andMD
l �ej!� 
or-responding to the 
andidate 
ontroller C�=0:0007, and we 
ompute theirstability radii a

ording to Theorem 4.2. Their respe
tive maximumvalues are max! � �MDol �ej!�� = 0:6572 < 1; (6.17)max! � �MD
l �ej!�� = 0:2111 < 1; (6.18)Sin
e these two values are smaller than one, Theorem 4.2 
on�rms thatC�=0:0007 stabilizes all systems in the un
ertainty set D
l, but also showsthat C�=0:0007 also stabilizes all systems in Dol. Su
h quantitative result
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ontroller with a so small stability margin as C�=0:0007 
on�rms our�rst qualitative observation that was that both un
ertainty sets are welltuned for robustly stable 
ontroller design based on Gmod (and this eventhough that qualitative observation is based on a suÆ
ient 
onditionthat would have invalidated the parti
ular 
ontroller C�=0:0007 when Dolis 
onsidered (see (6.16))).Beside these 
onsiderations, the main 
on
lusion we 
an derive fromthese stability tests is that the \to-be-validated" 
ontroller C�=0:0007is guaranteed to stabilize the true ferrosili
on produ
tion pro
ess G0.Therefore, the �rst of the requirements presented at the end of Se
-tion 6.2.1 (i.e. the stability of the a
hieved loop [C�=0:0007 G0℄) is satis-�ed.6.2.5 Controller validation for performan
eThe se
ond requirement presented at the end of Se
tion 6.2.1 was toreje
t the noise v(t) = H0(z)e(t), whi
h is essentially lo
ated at lowfrequen
ies (H0(ej!) is a �rst order low-pass �lter; see Figure 6.6). Aperforman
e spe
i�
ation in the frequen
y domain is therefore that thesensitivity fun
tion T22(G0; Cy�=0:0007(z)) = 1=(1 + G0Cy�=0:0007(z)) below at low frequen
ies in order to attenuate v(t). We thus de�ne theworst-
ase performan
e 
riterion as the largest modulus of the sensitivityfun
tion T22 de�ned in (5.3) i.e. tD(!; T22). This worst 
ase performan
e
riterion 
an be 
omputed using the LMI pro
edure presented in Theo-rem 5.1. We will 
all the 
ontroller C�=0:0007(z) validated if tD(!; T22)is high-pass with max! tD(!; T22) reasonably small. The Bode diagramsof the worst-
ase and a
hieved sensitivity fun
tions are depi
ted in Fig-ure 6.6.Clearly, the 
ontroller is validated by the 
losed-loop validation ex-periment yielding D
l but not by the open-loop experiment yielding Dol.The main 
on
lusion we 
an derive from this performan
e test is thatthe 
ontroller C�=0:0007 will suÆ
iently de
rease the output varian
ewhen it will be applied to G0. We have indeed proved that, for one ofthe two un
ertainty sets 
ontaining G0 (i.e. D
l), the worst 
ase modulusof the sensitivity fun
tion is a high pass �lter with a reasonably smallreasonan
e peak allowing reje
tion of the noise v(t).
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Figure 6.6: Open-loop and 
losed-loop 
ontroller validation for perfor-man
e: tDol(!; T22) (��), tD
l(!; T22) (|), jT22(G0; C�=0:0007)j (��),jT22(Gmod; C�=0:0007)j (� � �) and jH0j (�)Remark. Even if Dol is a \good" un
ertainty region with respe
t torobustly stable 
ontroller design with Gmod (i.e. it has a large set of sta-bilizing 
ontrollers), it appears that the worst 
ase performan
e a
hievedby C�=0:0007 with the plants in Dol is really bad. This is a 
onsequen
e ofthe fa
t that the worst 
ase �-gap is only an indi
ator of robust stabilityand not an indi
ator of robust performan
e.6.2.6 Con
lusionsLet us summarize what we have a
hieved in this se
ond illustration. Wehave applied our methodology to the 
ase of a 
hemi
al pro
ess wherethe 
ontrol obje
tive is the reje
tion of sto
hasti
 disturban
es. Wehave 
hosen a model Gmod for the true ferrosili
on produ
tion pro
essG0. From the model Gmod, a GPC 
ontroller has been designed. Wehave performed validation experiments on the true system leading totwo un
ertainty sets 
ontaining the true system (with a probability of95%). The results of Chapter 3 have then shown that both un
ertaintysets have a large robustly stabilizing 
ontroller set. After that, usingour 
ontroller validation pro
edures, we have been able to prove thatthe 
onsidered 
ontroller stabilizes and a
hieves suÆ
ient performan
ewith all plants in one of the un
ertainty set. As a 
onsequen
e, the
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ontroller 
an be applied to the true system sin
e we are assured thatthe a
hieved performan
e will be satisfa
tory (modulo the probabilitylevel of 95% for the presen
e of G0 in the un
ertainty set).
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Chapter 7Frequen
y domain image ofa set of linearlyparametrized transferfun
tionsIn the previous 
hapters, we have analyzed the set D of parametrizedtransfer fun
tions 
ontaining the true system at a 
ertain probabilitylevel and we have given some robustness tools for su
h a set. In this
hapter, we will do something rather di�erent : we will analyze the im-age of su
h a set in the Nyquist plane. The des
ription of the image ofD in its general stru
ture is quite 
ompli
ated. Therefore, we will limitus to un
ertainty sets D where the plants are linearly parametrized. Itis to be noted that su
h stru
ture will be used in the next 
hapter inorder to extend our result to the 
ase of biased model stru
tures.For model stru
tures that are linear in the parameter ve
tor �, weshow that the image in the Nyquist plane of a parametri
 
on�den
e re-gion D de�ned by an ellipsoid U� in the parameter spa
e is a frequen
ydomain 
on�den
e region L made up of ellipses U(!) at ea
h frequen
yin the Nyquist plane. The properties of the inverse image of this fre-quen
y domain 
on�den
e region in parameter spa
e are also analyzed.We establish that the inverse image C�(U(!)) of ea
h ellipse U(!) in theparameter spa
e is a mu
h larger volume than the initial ellipsoid U�,sin
e the mapping between the parametri
 and frequen
y domains is notbije
tive. We also show that this inverse image C�(U(!)) is di�erent at93



94 Frequen
y domain image of a set of linearly parametrized...ea
h frequen
y. Consequently, the inverse image of the whole frequen
ydomain 
on�den
e region L is the interse
tion of these di�erent volumesC�(U(!)) over the whole frequen
y range. We show by an examplethat this interse
tion may be a stri
t subset of the initial ellipsoid U�in parameter spa
e. The 
on�den
e region L in the Nyquist plane isthus generally the image of more parameter ve
tors � than those in U�.Consequently, the probability level linked to the 
on�den
e region L islarger than the probability level linked to the 
on�den
e region U� inparameter spa
e.Our de�nition of the image of the parametri
 
on�den
e region D inthe Nyquist plane is very 
lose to the 
on
ept of value set of a familyof parametrized polynomials (see e.g. [4℄ and referen
es therein). Thesevalue sets have been analyzed for a large amount of 
onstraints on theparameters (e.g. polytope, sphere, ...). The general use of these valuesets is to verify whether a family of polynomials is di�erent from zeroat ea
h frequen
y and is therefore stable. The results presented in this
hapter are nevertheless broader than those in [4℄. Indeed, our resultsdetermine not only the image L of D in the Nyquist plane, but also de-termine the inverse image of L in the parameter spa
e. Moreover, sin
ewe 
onsider here a probabilisti
 framework as opposed to the determin-isti
 framework in [4℄, our results give in addition the probability levellinked to the image L of the 
on�den
e region D in the Nyquist plane.Chapter outline. In Se
tion 7.1, we present, in a very general way,the linearly parametrized systems we will 
onsider and we de�ne a set Dthat 
ontains the linearly parametrized systems whose parameter ve
toris 
onstrained to lie in an ellipsoid. We show in Se
tion 7.2 that thisgeneral problem applies to the 
ase of un
ertainty sets dedu
ed frompredi
tion error identi�
ation. In Se
tion 7.3, we present two theoremsthat des
ribe the image of an ellipsoid by a nonbije
tive mapping, as wellas the inverse image de�ned by su
h mapping. In Se
tion 7.4, we presentthe frequen
y domain set L, image of the set D in the Nyquist plane. InSe
tion 7.5, we analyze the inverse image of the set L. In Se
tion 7.6,we de�ne the probability level linked to L and give the value of thisprobability level. In the last se
tions, we give some 
omments aboutthe 
ase of model stru
tures that are not linearly parametrized and we�nish by an illustration and some 
on
lusions.
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tion, we 
onsider linearly parametrized transferfun
tions. The 
ase of nonlinearly parametrized transfer fun
tions willbe brie
y dis
ussed in Se
tion 7.8. Let us thus 
onsider the followingsystem des
ription: G(z; �) = �G(z) + �(z)� (7.1)with � 2 Rk�1 the parameter ve
tor, �G(z) a known transfer fun
tion and�(z) a known row ve
tor of transfer fun
tions. Let us further assumethat � has a Gaussian probability density fun
tion with zero mean and
ovarian
e P� 2 Rk�k i.e. � � N (0; P�) (7.2)We have therefore: �TP�1� � � �2(k) (7.3)where �2(k) is the 
hi-square probability density fun
tion with k degreesof freedom.Let us now write the frequen
y response g(ej!; �) of G(z; �) at thefrequen
y ! in the following form:g(ej!; �) �= � Re(G(ej!; �))Im(G(ej!; �)) �= �g(ej!)z }| {� Re( �G(ej!))Im( �G(ej!)) �+ T (ej!)z }| {� Re(�(ej!))Im(�(ej!)) � � (7.4)The frequen
y response ve
tor g(ej!; �) has thus a Gaussian proba-bility density fun
tion with mean �g(ej!) and 
ovarian
e Pg(!) =
ov((g(ej! ; �)��g(ej!))(g(ej! ; �)��g(ej!))T ) = T (ej!)P�T (ej!)T 2 R2�2.We have thus g(ej!; �) � N (�g(ej!); Pg(!))(g(ej! ; �)� �g(ej!))TPg(!)�1(g(ej!; �)� �g(ej!)) � �2(2) (7.5)The results presented in (7.5) are very 
ommon and 
an e.g. be foundin [47℄. However, these results do not give a response to some important
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on�den
e ellipsoid in the parameter spa
eusing (7.3), is the image of su
h 
on�den
e ellipsoid in the Nyquistplane a 
on�den
e region with the same probability level? How 
anwe relate this image with the known probability density fun
tion ofthe frequen
y response (7.5)? If we design a 
on�den
e ellipse at ea
hfrequen
y using (7.5) and de�ne a set by 
onne
ting all these ellipses,what is the inverse image of that set in parameter spa
e? In orderto answer these questions, we will 
onsider throughout this paper thefollowing 
on�den
e ellipsoid in parameter spa
e and the 
orrespondingregion in transfer fun
tion spa
e. We will 
hoose a probability level of0.95 for these 
on�den
e regions.De�nition 7.1 Let us 
onsider the parametrized model stru
ture givenin (7.1) and the probability density fun
tion of the parameter ve
tor �given in (7.2). The ellipsoid U� of size �:U� = f� j �TP�1� � < �g; (7.6)with � su
h that Pr(�2(k) < �) = 0:95, is a 
on�den
e ellipsoid ofprobability 0.95 in the parameter spa
e. We de�ne the set D of transferfun
tions that 
orrespond to the parameters � 2 U�:D = fG(z; �) j � 2 U�g (7.7)The probability level �(D) linked to D is thus given by �(D) �= Pr(G(z; �) 2D) = 0:95.In the next se
tions, we des
ribe the image in the Nyquist plane ofthe un
ertainty region D and we analyze the properties of su
h image,as well as its inverse image, with respe
t to the probability level. Butbeforehand, we relate the general problem presented in this se
tion tothe parti
ular 
ase of the un
ertainty sets that 
an be derived from PEidenti�
ation.7.2 Link with the un
ertainty set dedu
ed fromPE identi�
ationFor this purpose, let us 
onsider the following linearly parametrizedmodel stru
ture. M = fG(z; Æ) j G(z; Æ) = Z(z)Æg; (7.8)
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tor and Z(z) is a transfer ve
tor
ontaining known transfer fun
tions (su
h as Laguerre or Legendre ba-sis fun
tions). A

ording to Proposition 2.2, if the true system 
an bedes
ribed as a plant G(z; Æ0) in M, then a PE identi�
ation pro
edurewith the model stru
ture M and N input-output data delivers an un-biased estimate Æ̂ of the true parameter ve
tor and an estimate PÆ ofthe 
ovarian
e matrix C of Æ̂. The estimate Æ̂ 
an be 
onsidered as therealization of a Gaussian distribution with mean Æ0 and 
ovarian
e C.In order to design 
on�den
e ellipsoids 
ontaining the true system at a
ertain probability level, we 
an then 
onsider the following distribution:(Æ � Æ̂)TP�1Æ (Æ � Æ̂) � �2(k) (7.9)Using the last expression and the pro
edure des
ribed in Chapter 2, we
an design an un
ertainty set Dpei 
ontaining the true system G(z; Æ0)at a 
ertain probability level, say 95 %. This un
ertainty set Dpei hasthe following stru
ture:Dpei = fG(z; Æ) j G(z; Æ) = Z(z)Æ with Æ 2 Upeig (7.10)Upei = fÆ j (Æ � Æ̂)TP�1Æ (Æ � Æ̂) < �g; (7.11)where � is su
h that Pr(�2(k) < �) = 0:95. The un
ertainty set Dpei
an be rewritten in the formalism of Se
tion 7.1. Indeed, let us denote� �= Æ � Æ̂, �G �= Z(z)Æ̂ and P� �= PÆ. Then, (7.10) and (7.11) are,respe
tively, equivalent with:Dpei = fG(z; �) j G(z; �) = �G(z) + Z(z)� with � 2 UpeigUpei = f� j �TP�1� � < �g;By 
omparing these last expressions with (7.7) and (7.6), we see thatthe problem of �nding the image in the Nyquist plane of the un
ertaintyset Dpei dedu
ed from PE identi�
ation and 
ontaining the true systemwith probability 95 %, in the 
ase where that true system is linearlyparametrized, 
an be solved by solving the general problem presentedin the previous se
tion.7.3 Linear algebra preliminariesThe general problem presented in Se
tion 7.1 
onsists of �nding (and ofanalysing) the image in the Nyquist plane of the set of plants D de�ned
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ribe properties of amapping T between a real ve
tor y and another real ve
tor x of lowerdimension. This mapping has the following expressionx = Ty (7.12)where y 2 Rk�1, x 2 Rn�1 (n < k) are real ve
tors, and T 2 Rn�k is areal matrix of rank n.Let us �rst re
all a well-known lemma that will be useful to provethe �rst theorem.Lemma 7.1 Let us 
onsider the partitioned symmetri
 positive de�nitematrix P 2 Rk�k: P = � P11 P12P T12 P22 �with P11 2 Rn�n, P12 2 Rn�(k�n) and P22 2 R(k�n)�(k�n). Let us also
onsider two real ve
tors x 2 Rn�1 and �x 2 R(k�n)�1 and an ellipsoidUx�x de�ned as:Ux�x = ( � x�x � j � x�x �T P�1� x�x � < 1 ) :Then the set Ux Ux �= fx j � x�x � 2 Ux�xg (7.13)is also an ellipsoid given byUx = fx j xTP�111 x < 1g (7.14)Proof. see Appendix A.1. �Note that Ux is not the interse
tion of Ux�x with the subspa
e �x = 0; itis a larger set. Let us now present our two theorems about the mappingT de�ned in (7.12).Theorem 7.1 Let us 
onsider the mapping T de�ned in (7.12) and theellipsoid Uy of size � in the y-spa
e:Uy = fy j yTP�1y y < �g; (7.15)
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y domain image of a set of linearly parametrized... 99with Py 2 Rk�k a positive de�nite matrix. The image Ux of Uy by themapping T i.e. Ux �= fx j x = Ty with y 2 Uyg is an ellipsoid in thex-spa
e given by Ux = fx jxTP�1x x < �g; (7.16)with Px = TPyT T 2 Rn�n.Proof. Let us �rst 
omplete the mapping T by generating a nonsingularmapping eT : � x�x � = eTz }| {� TT � y (7.17)su
h that ~T 2 Rk�k has rank k. Using eT , we have thatyTP�1y y < �() � x�x �T P�1z }| {eT�TP�1y eT�1� x�x � < � (7.18)Proving Theorem 7.1 is thus equivalent to proving that (7.16) is thedomain where x is 
onstrained to lie when (7.18) holds. This followsimmediately from Lemma 7.1, noting that if P = eTPy eT T , then Px =P11 = TPyT T . �Theorem 7.2 Let us 
onsider the mapping T and the ellipsoids Uy andUx de�ned in (7.12), (7.15) and (7.16), respe
tively. De�ne the inverseimage Cy of Ux using the mapping T asCy �= fy j x = Ty 2 Uxg; (7.19)Then Cy is a volume given byCy = fy j yTRCy < �g; (7.20)with RC = T TP�1x T , a singular matrix 2 Rk�k. Moreover, the volumeCy has the following properties:� The matrix RC de�ning Cy has rank n i.e. it has k � n zeroeigenvalues. The volume Cy has therefore k � n in�nite mainaxes. The dire
tions yi (i = 1:::k � n) of these in�nite main axesare the eigenve
tors 
orresponding to the null eigenvalues of RC .Moreover, these eigenve
tors yi belong to the null spa
e of T i.e.Tyi = 0.



100 Frequen
y domain image of a set of linearly parametrized...� The ellipsoid Uy is in
luded in Cy.Proof. See Appendix A.2. �Comments.� Sin
e the matrix T has rank n < k, the mapping (7.12) is notbije
tive. This explains the fa
t that the image of Uy by the map-ping (7.12) is exa
tly Ux and that the inverse image of Ux is alarger volume Cy 
ontaining Uy.� In the parti
ular 
ase where k = 3 and n = 2, Ux is then an ellipse(Theorem 7.1) and Cy is a 
ylinder with in�nite axis. The axis ofthe 
ylinder is in the dire
tion of the eigenve
tor 
orresponding tothe single null eigenvalue (Theorem 7.2).7.4 Image of D in the Nyquist planeTheorem 7.1 tells us that the image of an ellipsoid by a linear mappinginto a smaller dimensional spa
e is also an ellipsoid. This theorem willnow be used in order to �nd the frequen
y domain region (or dynami
region) that is the image of D in the Nyquist plane. This frequen
ydomain region is de�ned via a 
onstraint on the frequen
y response ofthe plants in this region at every frequen
y. The general expression of afrequen
y domain region 
an e.g. be written as follows:L = fG(z) j g(ej!) 2 U(!) 8!g; (7.21)where g(ej!) = � Re(G(ej!)) Im(G(ej!)) �T and U(!) is the parti
u-lar domain where the frequen
y response ve
tor of the plants G(z) 2 Lis 
onstrained to lie at the frequen
y !.We are thus looking for the frequen
y domain region L that 
orre-sponds to the image of the set D in the Nyquist plane. Let us �rst de�nethis notion properly.De�nition 7.2 (image of D in the Nyquist plane) Consider the setD of transfer fun
tions de�ned in (7.7) and the general expression of afrequen
y domain region L given in (7.21). The image of D in theNyquist plane is the frequen
y domain region L de�ned by (7.21) withU(!) de�ned as follows, at ea
h frequen
y !:
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y domain image of a set of linearly parametrized... 101U(!) = fg(ej!) j g(ej!) = g(ej!; �) for some � 2 U�g (7.22)with g(ej!; �) de�ned in (7.4).Important 
omments. De�nition 7.2 tells us� that the image L of D in the Nyquist plane is a set 
ontaining theimage of all plants in D;� that all \points g(ej!) 2 U(!)" at a frequen
y ! are the image ofsome plant in D.However, if we randomly sele
t frequen
y fun
tions f(ej!) 2 L, for! 2 [0 �℄, then most of su
h fun
tions will not be in D, i.e. formost of su
h fun
tions f(ej!) 2 L, there will not exist a � su
h thatf(ej!) = g(ej!; �) 8! with g(ej!; �) de�ned by (7.4).Using the mapping (7.4) between the spa
e of parametrized transferfun
tions G(z; �) (or parameter spa
e) and the frequen
y domain spa
e,and the results of Theorem 7.1, we 
an 
onstru
t an expli
it expressionof the image L of D in the Nyquist plane.Theorem 7.3 Consider the set D of transfer fun
tions G(z; �) = �G(z)+�(z)� presented in De�nition 7.1, and the mapping (7.4) between pa-rameter spa
e and frequen
y domain spa
e. The image of D in theNyquist plane (see De�nition 7.2) is a frequen
y domain region L havingthe following expression.L = fG(z) j g(ej!) 2 U(!) 8!g (7.23)U(!) = fg 2 R2�1 j (g � �g(ej!))TP (!)�1(g � �g(ej!)) < �g (7.24)with P (!) = T (ej!)P�T (ej!)T ,g(ej!) = � Re(G(ej!))Im(G(ej!)) � and �g(ej!) = � Re( �G(ej!))Im( �G(ej!)) � :The image L of D in the Nyquist plane is thus made up of ellipses U(!)at ea
h frequen
y around the frequen
y response of the known transferfun
tion �G(z). The ellipse U(!) at a parti
ular frequen
y 
an thereforebe 
onsidered as the image of D in the Nyquist plane at this frequen
y.
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y domain image of a set of linearly parametrized...Proof. In order to establish the proof of Theorem 7.3, we need to provethat the expression (7.24) of U(!) is equivalent with (7.22). The resultfollows dire
tly from Theorem 7.1 by 
onsidering the mapping (7.4) (i.e.g(ej!; �)� �g(ej!) = T (ej!)�) at a parti
ular frequen
y !. �Remarks. It is to be noted that the matrix P (!) de�ning U(!) is equalto the 
ovarian
e matrix Pg(!) of g(ej! ; �) (see (7.5)). It is also to benoted that, at the frequen
ies ! = 0 and ! = �, the ellipse U(!) degen-erates into a line segment. The matrix P (!) is no longer nonsingular.However, be
ause Im(G(ej!)) = 0 at ! = 0 and ! = �, one only needthe �rst entry of P (!) to be nonzero.7.5 Inverse image of LIn the previous se
tion, we have determined the frequen
y domain re-gion L, image of the set D of parametrized transfer fun
tions G(z; �).This set L, made up of ellipses U(!) at ea
h frequen
y, is de�ned by theproperty (7.22). In parti
ular, L 
ontains all plants in D. The set L isnevertheless not equivalent to D. Indeed, we prove that there are moreplants in L than those in D. These additional plants obviously in
ludeplants having a stru
ture di�erent from G(z; �) (i.e. they 
annot be de-s
ribed as G(z; �) for any � (see (7.1))), but surprisingly, also in
ludeplants having the stru
ture G(z; �) but for � 62 U�.In this 
hapter, we will fo
us on the additional plants in L havingthe stru
ture G(z; �) given in (7.1) but for � 62 U�. The fa
t that su
hadditional plants exist in L is a 
onsequen
e of the fa
t that the map-ping (7.4) is not bije
tive1 sin
e (7.4) maps a k-dimensional spa
e intothe 2-dimensional frequen
y domain spa
e. In order to establish thatadditional plants G(z; �) lie in L, the inverse image of L in the spa
e ofparametrized transfer fun
tions G(z; �) has to be determined. For thispurpose, it is useful to �rst analyze the inverse image D(U(!)), via themapping (7.4), of one ellipse U(!) of L in the spa
e of parametrizedtransfer fun
tions G(z; �).Proposition 7.1 Consider a parti
ular frequen
y ! and the ellipse U(!)de�ned in (7.24) whi
h is the image of the set D in the Nyquist plane at1The mapping T (ej!) is only bije
tive if the size k of the ve
tor � is equal to two.
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y !. Using the mapping (7.4) from � to g(ej!; �), de�ne theinverse image of U(!) in the parameter spa
e asC�(U(!)) = f� j g(ej!; �) 2 U(!)g: (7.25)Correspondingly, de�ne the inverse image of U(!) in the spa
e ofparametrized transfer fun
tions G(z; �) asD(U(!)) = fG(z; �) j g(ej!; �) 2 U(!)g: (7.26)Then the set C�(U(!)) is a volume in the �-spa
e with k�2 in�nite axesde�ned as:C�(U(!)) = f� 2 Rk�1 j �TT (ej!)TP (!)�1T (ej!)� < �g: (7.27)Moreover, U� � C�(U(!)) and D � D(U(!)).Proof. The expression (7.27) of C�(U(!)) follows dire
tly from The-orem 7.2 by substituting U(!) for Ux, U� for Uy and C�(U(!)) for Cy.It then follows from the last part of Theorem 7.2 that U� is a subsetof C�(U(!)). Now observe from (7.25) and (7.26) that D(U(!)) 
anequivalently be des
ribed asD(U(!)) = fG(z; �) j � 2 C�(U(!))g (7.28)It then follows from U� � C�(U(!)) and the de�nitions (7.7) and (7.28)that D � D(U(!)). �Proposition 7.1 tells us that the ellipse U(!) is the image of moreplants G(z; �) than those in D. These additional plants G(z; �out) with�out 2 C�(U(!)) n U�, have the property that 9 �in 2 U� su
h that, atfrequen
y !, g(ej!; �out) = g(ej!; �in);sin
e U(!) is de�ned by (7.22).It is also important to note that the inverse image D(U(!)) of U(!)in the spa
e of parametrized transfer fun
tions G(z; �) is di�erent atea
h frequen
y, be
ause the inverse image C�(U(!)) in parameter spa
eis di�erent at ea
h frequen
y. In other words, U(!) is the image of a setD(U(!)) of plants G(z; �) that are di�erent at ea
h frequen
y.
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y domain image of a set of linearly parametrized...In Proposition 7.1, we have 
omputed the inverse image C�(U(!))in parameter spa
e of one ellipse U(!), via the inverse of mapping (7.4).We now determine the inverse image U�(L) in parameter spa
e of thewhole set L de�ned by (7.23) and (7.24).Theorem 7.4 Consider the frequen
y domain set L de�ned by (7.23)and (7.24). De�ne the inverse image U�(L) of L in parameter spa
e,via the mapping (7.4), as:U�(L) = f� j G(z; �) 2 Lg: (7.29)Then U�(L) = \!2[0 �℄C�(U(!)); (7.30)where C�(U(!)) is de�ned in (7.25) and (7.27). Moreover,U� � U�(L): (7.31)Proof. First observe that, by the de�nition of L in (7.23), the setU�(L) de�ned in (7.29) is equivalent withU�(L) = f� j g(ej!; �) 2 U(!) 8!g:The result (7.30) then follows immediately from De�nition (7.25). Thein
lusion (7.31) then follows from the main result of Proposition 7.1,namely U� � C�(U(!)) 8!. �Corollary 7.1 Consider the frequen
y domain set L de�ned by (7.23)and (7.24). De�ne the inverse image D(L) of L in the spa
e of parametrizedtransfer fun
tions G(z; �), via the mapping (7.4), asD(L) = fG(z; �) j G(z; �) 2 Lg: (7.32)Then D � D(L).Proof. By (7.32) and (7.29), it follows thatD(L) = fG(z; �) j � 2 U�(L)g: (7.33)The result then follows from the result (7.31) of Theorem 7.4, and thede�nition (7.7) of D. �
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y domain image of a set of linearly parametrized... 105Corollary 7.2 With de�nitions as above, we have:U� � U�(L) � C�(U(!)) 8! (7.34)D � D(L) � D(U(!)) 8!: (7.35)Proof. The �rst in
lusions follow from Theorem 7.4 and Corollary 7.1.The se
ond in
lusion in (7.34) follows from (7.30), and the se
ond in
lu-sion of (7.35) from (7.33), (7.28) and (7.34). �Theorem 7.4 tells that the ellipsoid U� whi
h de�nes D is a subsetof U�(L) = T!2[0 �℄C�(U(!)). We shall illustrate by an example inSe
tion 8 that it may be a stri
tly proper subset of U�(L). As a 
onse-quen
e, D may be a stri
tly proper subset of D(L), and the frequen
ydomain region L is therefore the image in the Nyquist plane of a set D(L)
ontaining more plants G(z; �) than those in D. It is to be noted that,a

ording to the de�nition of L (De�nition 7.2), these additional plantsG(z; �out) with �out 2 U�(L) n U�, must have the property that, at ea
hfrequen
y !, there exists �in in U� su
h that G(ej!; �out) = G(ej!; �in).Note that it is not possible to have a single value of �in whi
h applies atall frequen
ies.7.6 Probability level linked to the 
on�den
eregion LIn the previous se
tions, we have shown that the image of a set D in theNyquist plane is a frequen
y domain region L made up of ellipses U(!)at ea
h frequen
y. We have also shown that the sets U(!) and the wholeregion L are (or may be) the image of more plants G(z; �) than those inD. Let us now 
onsider both sets (i.e. U(!) and L) as 
on�den
e regions.The ellipse U(!) is a 
on�den
e region for the frequen
y response ve
torg(ej!; �) of the plants G(z; �) and the set L is a 
on�den
e region for theplants G(z; �). Sin
e the parameter ve
tor � has a probability densityfun
tion (see (7.2)), we 
an relate a probability level to both 
on�den
eregions.De�nition 7.3 Consider the parametrized transfer fun
tions G(z; �)given in (7.1), whose parameter ve
tor � has the probability density fun
-tion (7.2). Consider also the sets U(!) and L de�ned in (7.23)-(7.24).



106 Frequen
y domain image of a set of linearly parametrized...The probability level �(U(!)) linked to U(!) is de�ned as :�(U(!)) = Pr(g(ej!; �) 2 U(!));where g(ej!; �) is de�ned in (7.4). The probability level �(L) linked toL is de�ned as: �(L) = Pr(G(z; �) 2 L):These probability levels �(U(!)) and �(L) will be larger than theprobability level �(D) linked to D (i.e. �(D) = 0:95) sin
e D � D(L) �D(U(!)) 8! (see Corollary 7.2). Theorem 7.5 gives an exa
t 
omputa-tion of �(U(!)), as well as upper and lower bounds for �(L).Theorem 7.5 Consider the parametrized transfer fun
tions G(z; �) givenin (7.1), whose parameter ve
tor � has the probability density fun
-tion (7.2). Consider also the sets U(!) and L de�ned in (7.23)-(7.24).Then the probability level �(U(!)) linked to U(!) (see De�nition 7.3) isgiven by: �(U(!)) = Pr(G(z; �) 2 D(U(!))) (7.36)= Pr(�2(2) < �) 8!; (7.37)where D(U(!)) is de�ned in (7.26). The probability level �(L) linked toL (see De�nition 7.3) is bounded by:�(D) � �(L) < �(U(!)) (7.38)where �(D) is the probability level linked to the set D presented in Def-inition 7.1 and of whi
h the set L is the image in the Nyquist plane(�(D) = 0:95).Proof. That �(U(!)) is equal to Pr(G(z; �) 2 D(U(!))) follows fromProposition 7.1. That �(U(!)) is also equal to (7.37) is a dire
t 
on-sequen
e of the probability density fun
tion of g(ej!; �) given in (7.5)sin
e the 
ovarian
e matrix Pg(!) of g(ej!; �) is equal to the matrix P (!)de�ning the ellipse U(!).Sin
e the inverse image of L in the spa
e of parametrized transferfun
tions G(z; �) is D(L), we 
an write the following about the proba-bility level �(L) linked to L:�(L) = Pr(G(z; �) 2 D(L)):
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eeds then from the fa
t that D(L) �D(U(!)) 8! and the lower bound from the fa
t that D � D(L) (seeTheorem 7.4). �Important 
omments. Theorem 7.5 shows that the probability level�(L) linked to the image of D in the Nyquist plane is larger than theprobability level linked to D (i.e. �(D) = 0:95). This is a 
onsequen
eof the fa
t that L is the image of more plants than those in D be
auseof the singularity of the mapping (7.4).It is also interesting to note that if we 
onsider the ellipses U(!) fre-quen
y by frequen
y, these ellipses are the image in the Nyquist planeof a set D(U(!)), di�erent at ea
h frequen
y, and having a probabilitylevel �(U(!)) whi
h follows from the probability density fun
tion (7.5)of g(ej!; �). However, sin
e the sets D(U(!)) are di�erent at ea
h fre-quen
y, when we 
olle
t together all ellipses U(!) to make up L, theprobability level �(L) is smaller than �(U(!)). This last remark showsthat the probablility density fun
tion of g(ej!; �) given in (7.5) is onlyrelevant for one parti
ular frequen
y. Theorem 7.5 shows therefore that,in order to design a 
on�den
e region L with a probability level �(L)larger than 95%, one has to �rst design a 
on�den
e region D havingthe desired probability level (i.e. �(D) = 0:95) and then take its imageL in the Nyquist plane.Remarks. The plants having another stru
ture than G(z; �) and thatlie in L do not modify the probability level �(L) sin
e only the parameterve
tor � has a probability density fun
tion.7.7 Summary and 
onsequen
es for the un
er-tainty region dedu
ed from PE identi�
a-tionIn the previous se
tion, we have 
onsidered the setD of linearly parametrizedtransfer fun
tions G(z; �) that is 
onstru
ted from a 95% 
on�den
e el-lipsoid U� in parameter spa
e. We have shown that the image L of thisset D is a frequen
y domain region L made up of ellipses at ea
h fre-quen
y. We have also shown that the inverse image of L in the spa
e ofparametrized transfer fun
tions G(z; �) is a set D(L) larger than the setD be
ause of the singularity of the mapping between parameter spa
e
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y domain spa
e. If we 
onsider the set L as a 
on�den
e re-gion for the plants G(z; �), the probability level �(L) linked to L is thuslarger than the probability level �(D) linked to D (i.e. �(D) = 0:95).These results 
an apply to the 
ase of the un
ertainty region Dpei
ontaining the (linearly parametrized) true system G0 at a probabilitylevel of 0.95. This set has been introdu
ed in Se
tion 7.2. Indeed, theset Dpei has the same stru
ture as the set D presented in De�nition 7.1.Therefore, we 
an 
onstru
t the image Lpei of Dpei in the Nyquist planeusing Theorem 7.3. If we 
onsider then the set Lpei as an un
ertaintyregion for the true system G0, Theorem 7.5 shows that the probabilitylevel of the presen
e of the true system G0 in the frequen
y domainun
ertainty region Lpei is larger than 0.95.7.8 Case of not linearly parametrized model stru
-turesUntil now, we have treated the 
ase of systems G(z; �) that 
an bewritten as in (7.1) and whose parameters have the probability densityfun
tion (7.2). We have shown for this type of model stru
ture the linkbetween a set D of transfer fun
tions G(z; �) and its image L in theNyquist plane. If the model stru
ture is not linearly parametrized asin (7.1), our 
on
lusions do not hold i.e. the image at a frequen
y ! isnot guaranteed to be an ellipse. In [62, 43, 10℄, a �rst order approxi-mation was used to map the parametri
 
on�den
e ellipsoid into ellipsesin the Nyquist plane. However, using su
h an approa
h, no probablitylevel 
an be guaranteed for the obtained frequen
y domain region.As a 
onsequen
e, it is very diÆ
ult to have a 
lear idea of the imagein the Nyquist plane of a set Dgen of rational transfer fun
tions withparameters appearing in both numerator and denominator like the setde�ned in (2.44). Some partial results have been presented in [20, 40℄.In [20℄, the authors have presented a way to 
ompute, at ea
h frequen
y,the largest and the smallest modulus and phase of the plants in a regionDgen. In [40℄, we have given an LMI pro
edure that 
omputes at ea
hfrequen
y the smallest overbounding ellipse that 
ontains the frequen
yresponse of the plants in su
h set Dgen.
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y domain image of a set of linearly parametrized... 1097.9 Simulation exampleIn order to illustrate the results of this 
hapter, we present the followingexample. Let us 
onsider the following system des
ription:G(z; �) = 0:08z�1 + 0:1009z�2 + 0:0359z�31� 1:5578z�1 + 0:5769z�2 + �1z�1 + �2z�2 + �3z�31� 1:5578z�1 + 0:5769z�2= �G(z) + �(z)z }| {11� 1:5578z�1 + 0:5769z�2 � � z�1 z�2 z�3 � �z }| {0� �1�2�2 1Awhere the parameter ve
tor � is assumed to have a Gaussian probabilitydensity fun
tion with zero mean and 
ovarian
e P� given by:P� = 10�3 �0� 1:0031 0:0263 �0:01110:0263 1:0039 0:0268�0:0111 0:0268 1:0039 1A :We 
onsider the 95 % 
on�den
e ellipsoid U� in the parameter spa
ethat de�nes a 
orresponding region D in the spa
e of transfer fun
tion:U� = f� j �TP�1� � < 7:81g;D = fG(z; �) j � 2 U�gUsing Theorem 7.3, we 
an design the image L of D in the Nyquistplane. This image L is made up of ellipses at ea
h frequen
y around thefrequen
y response of �G(z) and is represented in Figure 7.1. A

ordingto Theorem 7.3, the expression of the ellipse U(!) at the frequen
y ! isgiven by:U(!) = fg 2 R2�1 j (g � �g(ej!))TP (!)�1(g � �g(ej!)) < 7:81gwith P (!) = T (ej!)P�T (ej!)T and�g(ej!) = � Re( �G(ej!))Im( �G(ej!)) � ; T (ej!) = � Re(�(ej!))Im(�(ej!)) � :All plants in D lie in L, and L has the property (7.22). However, themappings between D and L and between D and U(!) are not bije
tive
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Figure 7.1: Frequen
y domain representation of D in the Nyquist planewith ellipsesU(!) at some frequen
ies, frequen
y response of �G(z) (dash-dot), frequen
y response of G(z; �out) (dashed) and frequen
y responseof G(z; �bis) (solid)as shown in Theorem 7.4 and Proposition 7.1, respe
tively. In orderto illustrate the results presented in these theorems, we will show twothings:1. there exist plants G(z; �out) outside D whose frequen
y responseve
tor g(ej!; �out) lies in some ellipses U(!) but not in all of them;2. there exist plants G(z; �bis) outside D that lie in the whole regionL.Sin
e the size of � is 3, we know that the ve
tors � that are proje
tedinto U(!) at the frequen
y ! are those lying in the 
ylinder C�(U(!))whose axis dire
tion is given by the normed eigenve
tor �null(!) 
orre-sponding to the null eigenvalue of the mapping T (ej!) (see Theorem 7.2
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an �nd a plant G(z; �out)su
h that �out 62 U�, but su
h that its frequen
y response g(ej!0 ; �out) at!0 lies in U(!0) for a parti
ular frequen
y !0, say !0 = 0:25. Indeed,let us 
hoose as ve
tor �out a ve
tor in the same dire
tion as �null(0:25)but outside the ellipsoid U�:�out = 0� 1:8084�3:50431:8084 1AThis ve
tor is well outside the ellipsoid U� sin
e we have that:�ToutP�1� �out = 19525 > 7:81but we also have that:g(ej0:25; �out) = �g(ej0:25) + =0z }| {T (ej0:25)�out = �g(ej0:25);and therefore g(ej0:25; �out) lies in U(0:25). However, this plant does notlie in all ellipses as 
an be seen in Figure 7.1 where it 
ir
les around theorigin at high frequen
ies.There also exist plants G(z; �bis) whose parameter ve
tors �bis 62 U�,but that lie 
ompletely in L. A

ording to Theorem 7.4 and Corol-lary 7.1, these are the plants whose parameter ve
tors �bis lie in U�(L) =T!2[0 �℄C�(U(!)) but not in U�. In order to �nd one of those parti
ularve
tors �bis, we pro
eed like we did to �nd �out. We 
hoose a parti
ularfrequen
y !0 and we 
hoose a ve
tor in the dire
tion �null(!0) of the axisof the 
ylinder C�(U(!0)). But, here, we 
hoose this frequen
y !0 in themiddle of the frequen
y range: !0 = �=2 and we 
hoose the ve
tor justoutside the ellipsoid U�:�bis = 0� 0:068400:0684 1A ; �TbisP�1� �bis = 9:4501 > 7:81 :In Figure 7.1, we see that the frequen
y response of the plant G(z; �bis)lies in U(!) for ea
h of the plotted ellipses. Sin
e we only plot the ellipsesat a 
ertain number of frequen
ies, Figure 7.1 alone does not prove thatG(z; �bis) is in L. In Figure 7.2, we have therefore plotted the value ofthe fun
tion
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omegaFigure 7.2: Values of (g(ej!; �bis)��g(ej!))TP (!)�1(g(ej! ; �bis)��g(ej!))as a fun
tion of the frequen
y (solid) and size of the ellipses U(!)(dashed) (g(ej! ; �bis)� �g(ej!))TP (!)�1(g(ej!; �bis)� �g(ej!))at ea
h frequen
y. We see that these values are, at ea
h frequen
y,smaller than 7.81, the size of the ellipses U(!). As a 
onsequen
e, we
an 
on
lude that G(z; �bis) has its frequen
y response in L even thoughG(z; �bis) does not lie in D.7.10 Con
lusionsIn this 
hapter, we have 
onsidered linearly parametrized plants G(z; �)whose parameters are normally distributed and we have presented resultsabout the image L in the Nyquist plane of a 
on�den
e region D inthe spa
e of parametrized transfer fun
tions. We have shown that thisimage is made of ellipses at ea
h frequen
y. However, sin
e the mappingbetween these two spa
es is not bije
tive, the image L in the Nyquistplane 
ontains more plants G(z; �) than the initial 
on�den
e region D.The image in the Nyquist plane is thus also a 
on�den
e region for theparametrized plants G(z; �) but with a probability level larger than thatof the initial 
on�den
e region D.



Chapter 8Extension to biased modelstru
tures using sto
hasti
embeddingIn Chapter 2, we have introdu
ed an un
ertainty set D delivered by
lassi
al predi
tion error identi�
ation methods and to whi
h the truesystem G0 is known to belong with some pres
ribed probability. Thisun
ertainty set D is de�ned as a set of parametrized rational transferfun
tions whose parameter ve
tor lies in an ellipsoidal 
on�den
e region.In Chapters 3, 4 and 5, we have developed some robustness tools for thatun
ertainty set D. In the previous 
hapter, we have analyzed the imageof D in the Nyquist plane for the parti
ular 
ase of linearly parametrizedsystems.The only important restri
tion in the approa
h yielding D is that weassume that the model stru
ture used for the identi�
ation is unbiasedand therefore that the true system lies in the 
hosen model stru
ture. Inthis 
hapter, we show that we 
an also design an un
ertainty set 
ontain-ing the true system using PE identi�
ation with biased model stru
turesprovided that this model stru
ture is linearly parametrized (e.g. FIRor Laguerre model stru
ture [65, 88℄) and that the identi�
ation is per-formed using the sto
hasti
 embedding assumptions [47℄. The key ideaof PE identi�
ation with sto
hasti
 embedding assumptions is to 
on-sider the unmodelled dynami
s just as the noise i.e. as the realizationof a zero mean sto
hasti
 pro
ess. Using this assumption, the authorsof [47℄ show that, at ea
h frequen
y, an ellipse 
ontaining the frequen
y113
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tures using sto
hasti
 embeddingresponse of the stable true system at a 
ertain probability level (e.g. �)
an be designed in the Nyquist plane around the frequen
y response ofthe identi�ed model. The ellipse at a parti
ular frequen
y is 
onstru
tedusing the probability density fun
tion of the frequen
y response of theidenti�ed model dedu
ed from the sto
hasti
 embedding assumptions.In [1, 79℄, the ellipses at ea
h frequen
y have been 
olle
ted together inorder to make up a dynami
 (or frequen
y domain) un
ertainty region 1.The problem with the un
ertainty region design presented in the papers[1, 79℄ is that, if ea
h ellipse 
ontains the frequen
y response of the truesystem at a probability of �, the probability level of the presen
e of theNyquist plot of G0 in the tube of ellipses is mu
h smaller as proved inChapter 7.One of the 
ontribution of the present 
hapter is thus to review thedesign of un
ertainty sets for a PE identi�
ation pro
edure with sto
has-ti
 embedding assumptions. We �rst show that PE identi�
ation withsto
hasti
 embedding assumptions allows one to design a set Dse of (lin-early) parametrized transfer fun
tions that 
ontains the true system ata 
ertain probability level (e.g. �) and whose parameter ve
tor is 
on-strained to lie in an ellipsoid. This un
ertainty set has thus the samestru
ture as the un
ertainty set D presented in Chapter 2. However,we also show that the parametri
 des
ription of Dse is not really \opti-mal" in this 
ase and we therefore propose another un
ertainty region:a dynami
 un
ertainty region L 
orresponding to the image of Dse inthe Nyquist plane. The image of Dse is obtained using the results ofChapter 7. The un
ertainty region L is made up of a tube of ellipsesin the Nyquist plane around the Nyquist plot of the identi�ed model.A

ording to Chapter 7, the un
ertainty set L has also the property of
ontaining the true system at a probability larger than the probability �related to Dse. It is to be noted that the matri
es de�ning the ellipses inour un
ertainty set L are exa
tly the same as those de�ning the ellipsesdedu
ed in [47, 1, 79℄. However, the size � of our ellipses 2 is di�erentof the size of the ellipses dedu
ed in these papers.Another 
ontribution of the present 
hapter is to extend the sto
has-ti
 embedding te
hnique to indire
t 
losed-loop identi�
ation. In 
losed-1In the sequel, we will use the term \dynami
 un
ertainty region" instead of \fre-quen
y domain un
ertainty region".2If we de�ne an ellipse as U = f� j �TR� < �g, the size of the ellipse is the value �and the matrix de�ning the ellipse is R.
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onstru
t a dynami
 un
ertainty region of 
losed-loop transferfun
tions 
ontaining the true 
losed-loop transfer fun
tion. The un
er-tainty region 
ontaining the true open-loop system G0 is then 
omputedusing the knowledge of the 
ontroller present in the loop.The last 
ontribution of the 
hapter is to give a general expression ofthis un
ertainty region L (valid for both the open-loop and 
losed-loop
ases) that will ease the robustness analysis of L developed in the next
hapter. In this general expression, the un
ertainty part takes the formof a transfer ve
tor whi
h represents the real and imaginary parts ofthe dynami
 un
ertainty and whose frequen
y response is therefore real.This ve
tor appears linearly in both the numerator and denominator.Chapter outline. In Se
tion 8.1, we brie
y review the assumptions ofsto
hasti
 embedding. In Se
tion 8.2, we show how we 
an perform a PEidenti�
ation pro
edure using the sto
hasti
 embedding assumptions. InSe
tion 8.3, we then present the way to 
onstru
t an un
ertainty set withPE identi�
ation with sto
hasti
 embedding assumptions in open loop.In Se
tion 8.4, we show that su
h an un
ertainty region 
an also bededu
ed using data 
olle
ted in 
losed loop. We then give the generalexpression of the un
ertainty region dedu
ed from PE identi�
ation withsto
hasti
 embedding assumptions in Se
tion 8.5.8.1 General assumptions on the true systemIn the previous 
hapters, we have redu
ed the gap between PE identi�
a-tion with unbiased model stru
tures and Robustness theory. Indeed, wehave shown that su
h an identi�
ation pro
edure delivers an un
ertaintyset that 
ontains the true system and for whi
h we have developed somerobustness tools. The aim of this 
hapter is to extend the results of theprevious 
hapters to the 
ase of biased model stru
tures using sto
hasti
embedding [47℄. In this �rst se
tion, we will present the assumptions weneed to make for this purpose on the used model stru
ture M and onthe stable, LTI, rational true system G0:y(t) = G0(z)u(t) + v(t): (8.1)Let us 
onsider that we want to identify a model of the true systemin the following linearly parametrized model stru
ture M:
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M = fG(z; �) 2 RH1 j G(z; �) = �(z)z }| {� �1(z) �2(z) ::: �k(z) � �g;(8.2)where � 2 Rk�1 is the parameter ve
tor and the �i(z) (i = 1:::k)are stable transfer fun
tions (e.g. FIR of Laguerre fun
tions [65, 88℄).This model stru
ture is biased i.e. there does not exist a �0 su
h thatG0 = G(z; �0).The property that allowed us to design an un
ertainty set 
ontainingthe true system with PE identi�
ation with unbiased model stru
tureswas the fa
t that the only sour
e of error between the identi�ed modeland the true system (i.e. the measurement noise v(t)) was assumed tobe the realization of a zero mean sto
hasti
 pro
ess. With biased modelstru
tures, the measurement noise is not the only sour
e of error. Theundermodeling is also another one. The key idea of sto
hasti
 embeddingis to 
onsider this se
ond sour
e of error just as the �rst one i.e. asthe realization of a zero mean sto
hasti
 pro
ess, independent of thenoise. Note that although this assumption is nonstandard in 
lassi
al PEidenti�
ation, this remains in the general philosophy of PE identi�
ationsin
e the bias error is 
onsidered in the same way as the measurementnoise in 
lassi
al PE identi�
ation. Let us now re
all this key idea moreformally.Assumption 8.1 ([47℄) The key assumption in sto
hasti
 embeddingis that (8.1) 
an be de
omposed in the following expression:y(t) = G(z; �0)u(t) +G�(z)u(t) +H0(z)e(t) (8.3)where G(z; �0) 2 RH1 is a transfer fun
tion lying inM and parametrizedby an unknown ve
tor �0. G�(z) 2 RH1 represents the (possibly in-�nite) unmodelled dynami
s that is assumed to be the realization of asto
hasti
 pro
ess with zero mean, independent of the additive noisev(t) = H0(z)e(t). It is further assumed that the impulse response 
o-eÆ
ients �n of G�(z) = P1n=1 �nz�n have a varian
e that dies at anexponential rate : E(�2n) = ��n (E(�n) = 0). As a 
onsequen
e, there ex-ists a number L 3 su
h that G� 
an be approximated suÆ
iently 
loselyby 3The 
hoi
e of L will be dis
ussed in the sequel.
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 embedding 117G�(z) = LXn=1 �nz�n �= �(z)�; (8.4)where �(z) = � z�1 z�2 ::: z�L � and �T = � �1 �2 ::: �L �.8.2 PE identi�
ation with sto
hasti
 embeddingassumptionsUsing Assumptions 8.1, we 
an perform a PE identi�
ation pro
edureon the true system G0 using N input and output data. This identi�-
ation delivers a model G(z; �̂) 2 M. As the unmodelled dynami
s are
onsidered as the realization of a zero mean sto
hasti
 pro
ess, the totalerror between the true system and the identi�ed model G(z; �̂) is madeup of the sum of varian
e 
ontributions only, wherein the 
ontributionof the unmodelled dynami
s is 
omputed by estimating the parametersdes
ribing its varian
e (i.e. � and �). The total error is thus a fun
-tion of the sto
hasti
 parameters des
ribing G�(z) (i.e. � and �) andof the sto
hasti
 parameters 
 des
ribing v(t) 4. These parameters 
anbe estimated from the data y(t) and u(t) using a maximum likelihoodte
hnique. In that sense, the 
omputation of the total error follows apro
edure very similar to the one used to 
ompute the varian
e errorin 
lassi
al predi
tion error identi�
ation theory with unbiased modelstru
tures (see [63℄ and Se
tions 2.1.2 and 2.1.3). Let us now summarizethe results of PE identi�
ation with sto
hasti
 embedding assumptionsin the following proposition.Proposition 8.1 ([47℄) Let us 
onsider a stable true system G0 sat-isfying Assumptions 8.1 and the model stru
ture M de�ned in (8.2).Let us also 
onsider N measured inputs u(t) and the 
orresponding Noutputs y(t) generated by (8.3). A PE identi�
ation pro
edure deliversthen an identi�ed parameter ve
tor �̂ de�ning a model G(z; �̂) 2 M.Moreover, if we rewrite the error between G0(z) and the identi�ed model4The sto
hasti
 parameters 
 des
ribing v(t) may 
ontain the parameters of thenoise model H0(z) as proposed in [1℄. Alternatively, it is possible to use a highorder identi�ed model of H0(z) as approximation of this noise model; and then theonly sto
hasti
 parameter of the noise v(t) is the varian
e �2e of the white noise e(t):
 = �2e .
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 embeddingG(z; �̂) as follows using (8.2) and (8.4):G0(z)�G(z; �̂) = �(z)z }| {� �(z) �(z) � ~�z }| {� �0 � �̂� �; (8.5)the ve
tor ~� is then asymptoti
ally a random ve
tor with Gaussian dis-tribution, zero mean and 
ovarian
e C�:~� � AsN (0; C�) (8.6)where C� 2 R(k+L)�(k+L) is an unknown symmetri
 positive de�nitematrix whi
h is a fun
tion of the sto
hasti
 parameters �, � and 
.Besides the identi�ed parameter ve
tor �̂, the PE identi�
ation pro
edurealso delivers an estimate P� of C� obtained using the estimates �̂, �̂ and
̂ of �, � and 
 derived from a maximum likelihood pro
edure.Remarks.� More details 
an be found in Appendix B.� The quality of the des
ription of the error between G0 and G(z; �̂)is of 
ourse in
uen
ed by the number N of measured data, thequality of the estimates (�̂, �̂ and 
̂) of the sto
hasti
 parametersresulting from a nonlinear optimization (i.e. the maximum likeli-hood te
hnique) and by the relevan
e of the sto
hasti
 embeddingassumptions (
hoi
e of L, ...).� In [37℄, the authors present a new version of sto
hasti
 embed-ding where the undermodeling is represented by a multipli
ativeperturbation. One of the main advantage of this new sto
hasti
embedding is that the pro
edure to estimate the sto
hasti
 param-eters is linear.� The 
hoi
e of L 
an now be dis
ussed. This 
hoi
e 
an be dividedin two steps. In a �rst step, we 
hoose L large (e.g. L = N) andwe use the maximum likelihood te
hnique to �nd estimates �̂ and�̂ of � and �. Using these \a

urate estimates", the \�nal" L is
hosen su
h that: �̂�̂L < "where " is very small.
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ertainty regions using sto
has-ti
 embedding in open loopIn the previous se
tion, we have presented the results related to a PEidenti�
ation pro
edure with biased model stru
ture and sto
hasti
 em-bedding assumptions. These results allow one to design di�erent typesof un
ertainty regions 
ontaining the true system at a 
ertain probabil-ity level. We �rst show that one of these types is an un
ertainty setDse having the same stru
ture as the un
ertainty set D delivered by PEidenti�
ation with unbiased model stru
tures.8.3.1 Design of the un
ertainty set DseThe properties presented in Proposition 8.1 are equivalent to those pre-sented in Proposition 2.2 that have allowed us to 
onstru
t a un
ertaintyset 
ontaining the true system at a 
ertain probability level in Chapter 2.Using a similar pro
edure, an un
ertainty set Dse having the followingform is 
onstru
ted.Dse = fG(z; �) j G(z; �) = Ĝ(z) + �(z)� with � 2 Useg (8.7)Use = f� j �TP�1� � < �g (8.8)where Ĝ(z) �= G(z; �̂) and � is a real parameter ve
tor of size k + L.This un
ertainty set has the following property.Proposition 8.2 Let us 
onsider a true system G0 satisfying Assump-tions 8.1. Then, the un
ertainty region Dse de�ned in (8.7) 
ontains G0at a probability level �(k + L;�): Pr(�2(k + L) < �) = �(k + L;�).Proof. A

ording to (8.6), the ve
tor ~� de�ned in Proposition 8.1 liesin Use with probability �(k + L;�). We 
an then 
on
lude that G0 liesin Dse at the same probability level sin
e, using (8.5), we 
an rewrite G0as G(z; ~�). �The un
ertainty regionDse has the general stru
ture presented in (2.44).As a 
onsequen
e, the results of Chapters 3, 4 and 5 
an be usedto assess the quality of Dse and/or to validate a 
ontroller for sta-bility and performan
e with respe
t to Dse. However, the statement



120 Extension to biased model stru
tures using sto
hasti
 embeddingG0 2 Dse given in Proposition 8.2 is based on the approximation (8.4)that boils down to negle
t the partP1n=L+1 �nz�n of the undermodelingG� = P1n=1 �nz�n. This 
an be misleading for robust 
ontrol designsin
e (8.4) is only an approximation in pra
ti
e. A solution to avoid thisproblem is to use a dynami
 un
ertainty region as we will see in the nextse
tion. A dynami
 un
ertainty region is an un
ertainty region that isnot bounded by a 
onstraint on a parameter ve
tor but by a 
onstrainton the frequen
y response of the plants in that un
ertainty region.8.3.2 Dynami
 un
ertainty region LolA possibility to design su
h dynami
 un
ertainty region is to take theimage Lol 5 of Dse in the Nyquist plane using the results presented inChapter 7. Using Theorem 7.3, this image Lol is given byLol = fG(z) j g(ej!) 2 U(!) 8!g (8.9)U(!) = fg 2 R2�1 j (g � ĝ(ej!))TP (!)�1(g � ĝ(ej!)) < �g (8.10)with P (!) = T (ej!)P�T (ej!)T , � as de�ned in (8.8) andĝ(ej!) = � Re(Ĝ(ej!))Im(Ĝ(ej!)) � ; T (ej!) = � Re(�(ej!))Im(�(ej!)) � :In order to 
lear up and to simplify the notations, let us rewrite thedynami
 un
ertainty set Lol as follows.Lol = fGin(z) j Gin(z) = G(z; �̂) + �(z) with �(z) 2 RH1and� Re(�(ej!))Im(�(ej!)) � 2 Uol(!) 8!g(8.11)Uol(!) = fg 2 R2�1 j gTP (!)�1g < �g: (8.12)The dynami
 un
ertainty region Lol that we have just designed has thefollowing property.5We have 
hanged the subs
ript \se" into the subs
ript \ol" in order to maydi�erentiate Lol obtained with open-loop sto
hasti
 embedding from L
l that will bededu
ed from 
losed-loop sto
hasti
 embedding.
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onsider a true system G0 satisfying Assump-tion 8.1. Then, the un
ertainty set Lol de�ned in (8.11) 
ontains G0 witha probability larger than �(k +L;�): Pr(�2(k+L) < �) = �(k +L;�).Proof. A

ording to Proposition 8.2, G0 lies in Dse with probability�(k+L;�). Sin
e Lol is the image of Dse in the Nyquist plane, the truesystem G0 lies therefore in Lol with a probability larger than �(k+L;�)(see Theorem 7.5). �The true system G0 lies thus in Lol and in Dse. So, if we stay in theframework de�ned in (8.4), there is no need to use Lol instead of Dse.However, the expression (8.4) is only an approximation. In pra
ti
e, wedo not have that: 1Xn=L+1 �nz�n = 0;As a 
onsequen
e, the stru
ture of Dse may not 
ontain the \real" truesystem as opposed to the stru
ture of Lol. Indeed, with respe
t to Dse,the dynami
 un
ertainty region Lol has the 
omplementary advantage of
ontaining systems having a more 
ompli
ated stru
ture thanG(z; �) butwhose frequen
y response is suÆ
iently 
lose to the frequen
y responseof the plants in Dse... su
h as the \real" true system. Indeed we havethat: G0(z) = 2Dsez }| {G(z; ~�) + 1Xn=L+1 �nz�nG0(ej!) � G(ej!; ~�) 8!:In the sequel, we will therefore always use Lol instead of Dse.Let us summarize. Using the sto
hasti
 embedding assumptions, wehave developed a methodology that has allowed us to design a dynami
un
ertainty region Lol 
ontaining the true system with a probabilitylarger than a given level in the 
ase of an open-loop identi�
ation witha biased model stru
ture M. In the next se
tion, we will show thatsu
h un
ertainty set 
an also be dedu
ed from an indire
t 
losed-loopidenti�
ation with biased model stru
ture.
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tures using sto
hasti
 embedding8.4 Extension to indire
t 
losed-loop PE identi-�
ation with sto
hasti
 embedding assump-tionsLet us 
onsider again the 
losed-loop experiment design presented in Se
-tion 2.2.4. We 
onsider thus a 
ontroller K whi
h forms a stable 
losedloop with the stable true system G0 de�ned in (8.1). Our pro
edure todesign an un
ertainty set L with sto
hasti
 embedding in 
losed loop isvery similar to the one used in the 
ase of unbiased model stru
tures:it 
onsists of �rst designing a frequen
y domain un
ertainty region 
on-taining one of the four transfer fun
tions of the matrix T (G0;K) de�nedin (2.27) and then to ba
k-
ompute the un
ertainty region 
ontainingG0. We give here the pro
edure for the 
losed-loop transfer fun
tion T 10de�ned in (2.29). We then have to assume that K and K�1 are stable[21℄. Similar pro
edures exist for the other three 
losed-loop transferfun
tions.Let us thus 
olle
t N experimental data r1(t) and y(t) on the 
losedloop presented in Figure 2.1 and 
omposed of the true system G0 andthe stabilizing 
ontroller K:y(t) = G0K1 +G0Kr1(t) + H01 +G0Ke(t) = T 10 r1(t) + ~v(t) (8.13)As the loop [K G0℄ is stable, it is possible to use the pro
edure presentedin Se
tion 8.3 to design an un
ertainty region LT of 
losed-loop transferfun
tions 
ontaining T 10 . For this purpose, we de�ne a biased modelstru
ture for T 10 as followsM
l = fT (z; �) 2 RH1 j T (z; �) = �
l(z)�g; (8.14)where � is a parameter ve
tor and �
l(z) a row ve
tor 
ontaining knowntransfer fun
tions. We rewrite also (8.13) in a way similar to (8.3):y(t) = T (z; �0)r1(t) + T�(z)r1(t) + ~v(t) (8.15)where T 10 is de
omposed into a model T (z; �0) 2M
l and the unmodelleddynami
s T�(z). Using the pro
edure given in Se
tion 8.3, we maydedu
e the un
ertainty region LT 
ontaining T 10 with a probability largerthan a given level:
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LT = fTin(z) j Tin(z) = T̂ (z)z }| {T (z; �̂)+�(z) with �(z) 2 RH1and� Re(�(ej!))Im(�(ej!)) � 2 U
l(!) 8!g(8.16)where T̂ = T (z; �̂) 2 RH1 is the identi�ed model and U
l(!) is an el-lipse having the same form as the one de�ned in (8.12).The set LT is a set of 
losed-loop transfer fun
tions. The 
orre-sponding set of open-loop transfer fun
tions is now 
onstru
ted. AsG0 = T 10 =(K(1 � T 10 )), the open-loop transfer fun
tion Gin(z) 
orre-sponding to Tin(z) is given by:Gin(z) = 1K � Tin(z)1� Tin(z) : (8.17)In parti
ular, the nominal open-loop model G(z; �̂) 
orresponding toT̂ = T (z; �̂) is given by:G(z; �̂) = 1K � T (z; �̂)1� T (z; �̂) (8.18)As we assume that the true system G0 is stable, we also assume thatthis open-loop model G(z; �̂) is stable. The set L
l of open-loop plantsGin 
orresponding to the set LT of 
losed-loop transfer fun
tions Tin is:L
l = fGin(z) j Gin(z) = T̂K�KT̂ + 1K�KT̂ �1+ �11�T̂ � with �(z) 2 RH1and� Re(�(ej!))Im(�(ej!)) � 2 U
l(!) 8!g(8.19)The frequen
y domain un
ertainty region L
l 
an be rewritten as followsusing (8.18).
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hasti
 embeddingL
l = fGin(z) j Gin(z) = G(z;�̂N )+ 1+KG(z;�̂N )K �1+(�1�KG(z;�̂N ))� with �(z) 2 RH1and� Re(�(ej!))Im(�(ej!)) � 2 U
l(!) 8!g(8.20)Properties of L
l. A

ording to the results of the previous se
tion,the true 
losed-loop transfer fun
tion T 10 lies in LT with a probabilitylarger than a given level. As a 
onsequen
e, the true system G0 =T 10 =(K(1 � T 10 )) lies in the frequen
y domain un
ertainty region L
lwith the same probability.8.5 General stru
ture of the un
ertainty regionsobtained from PE identi�
ation with biasedmodel stru
turesIn the previous subse
tions, un
ertainty regions Lol and L
l 
ontainingthe true system have been obtained as a result of open-loop or \in-dire
t" 
losed-loop PE identi�
ation with biased model stru
tures andsto
hasti
 embedding assumptions, respe
tively. In both 
ases, these un-
ertainty regions take the form of a set of open-loop transfer fun
tions(around some 
enter) de�ned by a dynami
 un
ertainty �(z) 2 RH1whose frequen
y response is bounded at ea
h frequen
y by an ellipsoidin the Nyquist plane. In the following proposition, we show that Lol andL
l 
an be des
ribed using the same generi
 expression L. The form ofthis generi
 expression has been 
hosen very similar to the stru
ture ofthe un
ertainty region D de�ned in (2.44) in order to ease the robustnessanalysis of L that will be developed in the next 
hapter. For this pur-pose, let us de�ne the RI ve
tor Æ(z) 
orresponding to the un
ertaintytransfer fun
tion �(z).De�nition 8.1 (The RI ve
tor Æ(z) 
orresponding to �(z)) Let �(z)be the stable un
ertainty transfer fun
tion present in (8.11) and (8.20).We de�ne the RI ve
tor Æ(z) as follows:Æ(z) = � Re(�(z))Im(�(z)) � : (8.21)
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y response Æ(ej!) of Æ(z) is, at ea
h frequen
y,real: Æ(ej!) 2 R2�1 8!.Proposition 8.4 Consider the true open-loop dynami
s G0. The un-
ertainty regions Lol and L
l given in (8.11) and (8.20), respe
tively,and 
ontaining G0 with a probability larger than a given level have thegeneral form of a frequen
y domain un
ertainty region L where the un-
ertainty part is the RI ve
tor Æ(z) (see De�nition 8.1).L = (G(z; Æ(z)) j G(z; Æ(z)) = Ĝ(z) + ZN (z)Æ(z)1 + ZD(z)Æ(z) with Æ(ej!) 2 U(!) 8!)(8.22)U(!) = fÆ(ej!) 2 R2�1 j Æ(ej!)TR(!)Æ(ej!) < 1g (8.23)where� R(!) are symmetri
 positive de�nite matri
es 2 R2�2. These ma-tri
es are di�erent at ea
h frequen
y !.� ZN (z) and ZD(z) are stable row ve
tors of length 2 
ontainingknown transfer fun
tions.� Ĝ(z) 2 RH1 is a known transfer fun
tion that 
an be 
onsideredas the 
enter of L 6.Proof. Let us �rst prove that Lol 
an be expressed as in (8.22). This
an be done by 
onsidering Expression (8.12) of Uol(!) and by rewritingexpression (8.11) of Lol using (8.21):Lol = nGin(z) j Gin(z) = G(z; �̂) + � 1 j � Æ(z) with Æ(ej!) 2 Uol(!) 8!o(8.24)whi
h is in the form (8.22) with ZN = (1 j), ZD = (0 0), Ĝ(z) =G(z; �̂) 2 RH1 and R(!) = P (!)�1=�.6we 
all \
enter of the un
ertainty region L" the system 
orresponding to Æ(z) = 0
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tures using sto
hasti
 embeddingNow 
onsider L
l and rewrite expression (8.20) using (8.21) and de-noting Ĝ(z) = G(z; �̂):L
l = fGin(z) j Gin(z) = Ĝ(z)+ 1+KĜ(z)K � 1 j �Æ(z)1+(�1�KĜ(z))� 1 j �Æ(z) andÆ(ej!) 2 U
l(!) 8!g(8.25)whi
h is 
learly in the form (8.22). Note that Ĝ(z) = G(z; �̂) is assumedstable; hen
e, ZN (z) and ZD(z) are also stable sin
e the 
ontroller Kis stable and non-minimum phase a

ording to [21℄. This 
ompletes theproof. �Remarks.� The 
enter Ĝ(z) of the un
ertainty region L is given by the iden-ti�ed model G(z; �̂) in the open-loop 
ase and, in the 
losed-loop
ase, by G(z; �̂), the open-loop model 
orresponding to the identi-�ed 
losed-loop model T (z; �̂): see (8.18).� The un
ertainty set L has a parti
ularity with respe
t to the 
las-si
al linear fra
tional dynami
 un
ertainty regions su
h as addi-tive or multipli
ative un
ertainty sets (see (2.45) for the additiveun
ertainty set). Indeed, the un
ertainty part Æ(z) is not a 
las-si
al transfer fun
tion but is a \transfer ve
tor" whose frequen
yresponse is real7. Therefore, the 
lassi
al tools of Robustness The-ory 
an not be used for L. However, the un
ertainty set L has astru
ture that is very similar to the one of the un
ertainty regionD delivered by PE identi�
ation with unbiased model stru
turesand for whi
h we have developed robustness tools in the previous
hapters. The only di�eren
e is that the un
ertainty domain ofÆ(z) is here di�erent at ea
h frequen
y. This similarity will helpus to develop robustness tools for this un
ertainty region L.8.6 Con
lusionsIn this 
hapter, we have shown that a PE identi�
ation pro
edure witha biased model stru
ture allows one to design a dynami
 un
ertainty7Su
h a des
ription is due to the ellipsoidal un
ertainty domain U(!) at ea
hfrequen
y.
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ontaining the true system with a probability larger than a givenlevel. Moreover, we have also shown that this parti
ular un
ertaintyregion presents similarities with the un
ertainty region D delivered byPE identi�
ation with unbiased model stru
tures.
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Chapter 9Robustness analysis of LIn the previous 
hapter, we have introdu
ed a dynami
 un
ertainty re-gion L. This un
ertainty region 
ontaining the true system with a prob-ability larger than a given level is the un
ertainty region obtained after aPE identi�
ation with biased model stru
ture and sto
hasti
 embeddingassumptions. The un
ertainty region L is made up of transfer fun
tionsparametrized by a transfer ve
tor1 Æ(z) whi
h represents the real andimaginary parts of the dynami
 un
ertainty and whose frequen
y re-sponse is real. The un
ertainty ve
tor Æ(z) is 
onstrained to lie at ea
hfrequen
y in an ellipse.Let us now 
onsider that a PE identi�
ation pro
edure has deliv-ered su
h un
ertainty set L. Let us also 
onsider that we have 
hosena model Gmod for 
ontrol design (e.g. the 
enter of L) and that wehave designed a 
ontroller C from that model Gmod. In order to vali-date the 
ontroller C with respe
t to the un
ertainty region L, we willdevelop, in this 
hapter, robust stability and performan
e analysis toolsfor su
h un
ertainty set. These tools are the same as those developedfor the un
ertainty set D in Chapters 4 and 5 i.e. a ne
essary and suf-�
ient 
ondition for the stabilization of all plants in L by the 
ontrollerC (
ontroller validation for stability) and a pro
edure to 
ompute theworst 
ase performan
e a
hieved by C over all plants in L (
ontrollervalidation for performan
e). These robustness tools give therefore a 
on-dition guaranteeing the stabilization of the unknown true system G0 bythe 
ontroller C and a lower bound of the performan
e a
hieved by the1We use the term \transfer ve
tor" with some abuse. The ve
tor Æ(z) is in fa
t afun
tion of a 
omplex variable. 129
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ontroller C on the true system.In order to obtain these robustness tools, we will use the similaritiesbetween the stru
ture of L and D. In that sense, our main 
ontribution
on
erning the robustness analysis of un
ertainty sets dedu
ed from PEidenti�
ation with sto
hasti
 embedding assumptions, has been a
hievedin the last se
tion of Chapter 8. In that se
tion, we have indeed expressedthe general stru
ture of L so that the tools developed in Chapters 4 and 5for D 
an be easily adapted for L.Robust stability analysis. Just as for the un
ertainty region D, thene
essary and suÆ
ient 
ondition for the stabilization of all plants in Lby C is thus derived from the LFT framework of the un
ertainty regionL. Indeed, we show that one 
an rewrite the 
losed-loop 
onne
tion ofthe 
ontroller C and all plants in the un
ertainty region L as a parti
u-lar LFT where the un
ertainty part is a transfer ve
tor whose frequen
yresponse is real. In that parti
ular LFT, the (real) stability radius 
anbe 
omputed exa
tly, using the result presented in [53, 72℄.Our robust stability analysis tool is \better" than the one obtainedin [79℄. In [79℄, the authors present an LFT des
ription of the 
losed-loop
onne
tion of the 
ontroller C and all plants in an un
ertainty regionL, where the ellipsoids at ea
h frequen
y are approximated by a mixedperturbation set. The main advantage of our LFT des
ription is that itexa
tly represents the 
losed-loop 
onne
tion of the 
ontroller C and allplants in the un
ertainty region L without any approximation.Robust performan
e analysis. Just as for D, our robust perfor-man
e analysis tool for L is based on the 
omputation of the worst 
aseperforman
e of a 
losed-loop made up of the 
onsidered 
ontroller anda system in the un
ertainty region L. The performan
e of a parti
ularloop made up of the 
ontroller C and a plant in L is here also de�ned asthe largest singular value of a weighted version of the matrix 
ontainingthe four 
losed-loop transfer fun
tions of this loop. Our de�nition ofthe worst 
ase performan
e is thus very general and, by an appropriate
hoi
e of the weights, allows one to derive most of the 
ommonly usedworst 
ase performan
e measures su
h as e.g. the largest modulus ofthe sensitivity fun
tion. Our 
ontribution is to show that the 
omputa-tion of the worst 
ase performan
e 
an be formulated as an LMI-based
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ase of D, the LMI formulationof the problem uses the fa
t that the un
ertainty part (i.e. the transferve
tor Æ(z)) of the un
ertainty region L appears linearly in the expres-sion of both the numerator and the denominator of the systems in theun
ertainty region L and, as a 
onsequen
e, also appears linearly in theexpression of the di�erent 
losed-loop transfer fun
tions.If you are only interested by the largest modulus of one 
losed-looptransfer fun
tion (e.g. the sensitivity fun
tion), our LMI-optimizationis not ne
essary. Indeed, in this 
ase, the 
omputation of the worst 
aseperforman
e 
an also be a
hieved by using the fa
t that an ellipse ofun
ertainty for the open-loop system maps into an ellipse of un
ertaintyfor the 
losed-loop system (see [81, 30℄ for the 
ase of a disk). However,this result 
an not be used to 
ompute our more general worst 
aseperforman
e 
riterion. Our optimization approa
h has also the furtheradvantage that it 
an easily be extended to the multivariable 
ase.Chapter outline. In Se
tion 9.1, we present our pro
edure to validatea 
ontroller for stability with respe
t to an un
ertainty set L. In Se
-tion 9.2, we present the LMI pro
edure allowing the exa
t 
omputationof the worst 
ase performan
e a
hieved by a 
ontroller C over all plantsin L. In Se
tion 9.3, we present a simulation example and we �nish bydrawing some 
on
lusions in Se
tion 9.4.9.1 Robust stability analysis of LAs said in the introdu
tion, the aim of this �rst se
tion is to validatea given 
ontroller for stability i.e. to �nd a ne
essary and suÆ
ient
ondition for the stabilization of all plants in an un
ertainty region Lby this 
ontroller. Robust stability theory provides su
h ne
essary andsuÆ
ient 
onditions [34, 31, 92, 68, 53℄. But for the appli
ation of ro-bust stability results, it is required that the 
losed loop 
onne
tions ofthis 
ontroller to all plants in the un
ertainty region be rewritten as aset of loops that 
onne
t a known �xed dynami
 matrix M(z) to anun
ertainty part �(z) of known stru
ture that belongs to a pres
ribedun
ertainty domain.
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ertainty region L and a
ontroller CJust as was done for the un
ertainty set D in Chapter 4, a �rst step isto �nd the parti
ular set of loops, given in the general LFT framework,that 
orrespond to the 
losed-loop 
onne
tions of all plants in L withC. This is a
hieved using the following theorem whi
h is very similar toTheorem 4.1.Theorem 9.1 (LFT framework for L) Consider an un
ertainty re-gion L of plant transfer fun
tions given by (8.22) and a 
ontroller C(z) =X(z)=Y (z) 2. The set of 
losed-loop 
onne
tions [G(z; Æ(z)) C℄ for allG(z; Æ(z)) 2 L 
an be rewritten into to the set of loops [ML(z) Æ(z)℄whi
h obey the following system of equations� p = Æ(z)qq =ML(z)p (9.1)The un
ertainty part (i.e. the RI ve
tor Æ(z)) has a real frequen
yresponse Æ(ej!) that is 
onstrained to lie, at the frequen
y !, in thenormalised un
ertainty domain: jT (!)Æ(ej!)j2 < 1. T (!) 2 R2�2 isa square root of the matrix R(!) de�ning U(!) in (8.22): R(!) =T (!)TT (!). ML(z) is a row ve
tor of transfer fun
tions of length 2de�ned as: ML(z) = �(ZD + X(ZN � ĜZD)Y + ĜX ): (9.2)Proof. The 
losed-loop 
onne
tion of C and a parti
ular plantG(z; Æ(z)) =(Ĝ+ ZNÆ(z))=(1 + ZDÆ(z)) in L (see (8.22)) is given by( y = Ĝ+ZNÆ(z)1+ZDÆ(z) u = (Ĝ+ (ZN�ĜZD)Æ(z)1+ZDÆ(z) )uu = �Cy (9.3)By introdu
ing two new signals q and p, we 
an restate (9.3) as8>>>>><>>>>>: � qy � = H(z)z }| {� �ZD 1ZN � ĜZD Ĝ �� pu �p = Æ(z)qu = �Cy (9.4)2X(z) and Y (z) are the polynomials 
orresponding to the numerator and to thedenominator of C(z), respe
tively
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ertainty ve
tor Æ(z) from the knownmatrix H(z) and the 
ontroller C(z). The variables y and u are noweliminated from (9.4), yielding the following system of equations whi
his equivalent to (9.1):8>>><>>>: p = Æ(z)qq = ML(z)z }| {(�ZD � C(ZN � ĜZD)1 + ĜC ) p (9.5)The system (9.5) is equivalent with the 
losed-loop 
onne
tion of aparti
ular G(z; Æ(z)) in L with the 
ontroller C. In order to 
onsider the
losed-loop 
onne
tions for all plants in L, we have to 
onsider all Æ(z)su
h that Æ(ej!) 2 R2�1 lies in the ellipsoid U(!) given by:U(!) = fÆ(ej!) j Æ(ej!)TR(!)Æ(ej!) < 1g: (9.6)This last expression is the un
ertainty domain of the un
ertainty ve
-tor Æ(z) at the frequen
y !. This un
ertainty domain 
an be normalized.Using R(!) = T (!)TT (!), we see thatÆ(ej!) 2 U(!), (T (!)Æ(ej!))T (T (!)Æ(ej!)) < 1() jT (!)Æ(ej!)j2 < 1(9.7)The set of loops [ML Æ(z)℄ for all Æ(z) su
h that Æ(ej!) 2 R2�1 liesin the un
ertainty domain jT (!)Æ(ej!)j2 < 1 is therefore equivalent tothe set of 
losed-loop 
onne
tions [G(z; Æ(z)) C℄ for all plants G(z; Æ(z))in L. This 
ompletes the proof. �9.1.2 Robust stability 
ondition for the un
ertainty re-gion LTheorem 9.1 allows us to \transform" our problem of testing if the 
on-troller C stabilizes all the plants in the un
ertainty region L into theequivalent problem of testing if the set of loops [ML(z) Æ(z)℄ are sta-ble for all Æ(z) su
h that Æ(ej!) 2 R2�1 lies in the un
ertainty domainjT (!)Æ(ej!)j2 < 1. This equivalent set of loops is very similar to the setof loops [M(z) �℄ presented in Se
tion 4.1 and for whi
h there exists arobust stability theorem (see Proposition 4.1). The only di�eren
e is thesize of the un
ertainty domain whi
h is here di�erent at ea
h frequen
y.As a 
onsequen
e, Proposition 4.1 
an not be used to �nd a ne
essary
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ient robust stability 
ondition for the un
ertainty set L. How-ever, we 
an derive the ne
essary and suÆ
ient robust stability 
onditionafter a last e�ort of normalisation and using the following property ofthe stability radius of the loop [M(z) �℄ (whi
h is a dire
t 
onsequen
eof its de�nition (4.3)).Proposition 9.1 Consider a known 
omplex ve
tor M 2 C1�b and � 2Rb�1. We have that 1 �M� 6= 0 for all � su
h that j�j2 < 1 if andonly if �(M) � 1 (9.8)where � is the stability radius de�ned in (4.3).Theorem 9.2 (robust stability 
ondition) Consider an un
ertaintyregion L of plant transfer fun
tions having the general form (8.22) andlet C be a 
ontroller that stabilizes the 
enter Ĝ(z) of L. All the plantsin the un
ertainty region L are stabilized by the 
ontroller C if and onlyif, at ea
h frequen
y !, �(ML(ej!)T�1(!)) � 1: (9.9)with �, the stability radius de�ned in (4.3), R(!) = T (!)TT (!) andML(z) as de�ned in (9.2).Proof. By Theorem 9.1, our problem of testing if the 
ontroller Cstabilizes all the plants in the un
ertainty region L is equivalent to test-ing if the set of loops [ML(z) Æ(z)℄ are stable for all Æ(z) su
h thatÆ(ej!) 2 R2�1 lies in the un
ertainty domain jT (!)Æ(ej!)j2 < 1.A �rst step of this proof is to observe� that ML(z) is stable. Indeed, its denominator 
ontains the de-nominator of the sensitivity fun
tion of the 
losed loop [C Ĝ(z)℄,whi
h is stable by assumption, and the denominators of ZN (z) andZD(z) whi
h are also stable a

ording to Proposition 8.4;� that, by De�nition 8.1, �(z) = (1 j)Æ(z) with �(z) 2 RH1;� and that the un
ertainty domain of Æ(z) i.e. Dom(Æ(z)) = fÆ(z) jjT (!)Æ(ej!)j2 < 1 8!g is 
onne
ted and 
ontains Æ(z) = 0.
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on
lusion that follows from these observations is that one ofthe 
onsidered loops i.e. [ML(z) Æ(z) = 0℄ is guaranteed to be stable. Asa 
onsequen
e, using the fa
t that Dom(Æ(z)) is 
onne
ted and the fa
tthat �(z) 2 RH1, the set of loops [ML(z) Æ(z)℄ are internally stablefor all Æ(z) 2 Dom(Æ(z)) if and only if, at ea
h frequen
y !,1�ML(ej!)Æ(ej!) 6= 0 8Æ(ej!) su
h that jT (!)Æ(ej!)j2 < 1: (9.10)A �nal normalisation shows that expression (9.10) is equivalent withthe statement (9.9). Indeed, if, at ea
h frequen
y !, we de�ne a realve
tor �(ej!) �= T (!)Æ(ej!), then, (9.10) is equivalent with:1�ML(ej!)T�1(!)�(ej!) 6= 0 8�(ej!) su
h that j�(ej!)j2 < 1 (9.11)Sin
e �(ej!) is real, this last expression is equivalent with (9.9), byProposition 9.1. �Theorem 9.2 gives a ne
essary and suÆ
ient 
ondition for the sta-bilization of all plants in L by any 
ontroller that stabilizes Ĝ(z), the\
enter" of L. This ne
essary and suÆ
ient 
ondition involves the 
om-putation at ea
h frequen
y of the stability radius �(ML(ej!)T�1(!)),whi
h is a
hieved using De�nition 4.1. Sin
e the true system lies in L,Theorem 9.2 gives also a 
ondition guaranteeing that the 
ontroller Cstabilizes the unknown true system G0.9.2 Robust performan
e analysis of LIn this se
tion, we show that we 
an evaluate the worst 
ase performan
ea
hieved by some 
ontroller C with all systems in the un
ertainty regionL, i.e. the worst level of performan
e of a 
losed loop made up of the
onne
tion of the 
onsidered 
ontroller and a parti
ular plant in L. Thisworst 
ase performan
e is of 
ourse a lower bound for the 
losed-loopperforman
e a
hieved with the true system. We say that a 
ontrolleris validated for performan
e if the worst 
ase performan
e in L remainsbelow some threshold.The worst 
ase performan
e 
riterion over all plants in an un
ertaintyregion L is de�ned in a similar way as has been de�ned, in Se
tion 5.1,
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ase performan
e a
hieved by a 
ontroller C over the plantsin the un
ertainty region D.De�nition 9.1 Consider an un
ertainty region L of systems G(z; Æ(z))whose general stru
ture is given in (8.22). Consider also a 
ontrollerC(z). The worst 
ase performan
e a
hieved by this 
ontroller at a fre-quen
y ! over all systems in L is de�ned as:JWC(L; C;Wl;Wr; !) = maxG(z;Æ(z))2L �1 �WlT (G(ej!; Æ(ej!)); C(ej!))Wr� ;(9.12)where Wl(z) = diag(Wl1;Wl2) andWr(z) = diag(Wr1;Wr2) are diagonalweights, �1(A) denotes the largest singular value of A, and T (G;C) isthe transfer matrix of the 
losed-loop system de�ned in (3.3).The worst 
ase performan
e JWC 
an be 
omputed at a given fre-quen
y using an LMI based optimization problem. The LMI pro
edureis now given in the following theorem. Note that this pro
edure is verysimilar to that used in Theorem 5.1 to 
ompute the worst 
ase perfor-man
e in the un
ertainty set D.Theorem 9.3 Consider an un
ertainty region L de�ned in (8.22) anda 
ontroller C(z) = X(z)=Y (z) 3. Then, at frequen
y !, the 
riterionfun
tion JWC(L; C;Wl;Wr; !) is obtained asJWC(L; C;Wl;Wr; !) = p
opt; (9.13)where 
opt is the optimal value of 
 for the following standard 
onvexoptimization problem involving LMI 
onstraints evaluated at !:minimize 
over 
; �subje
t to � � 0 and� Re(a11) Re(a12)Re(a�12) Re(a22) �� � � R(!) 00 �1 � < 0 (9.14)where3X(z) and Y (z) are the polynomials 
orresponding to the numerator and to thedenominator of C(z), respe
tively



Robustness analysis of L 137� a11 = (Z�NW �l1Wl1ZN + Z�DW �l2Wl2ZD)� 
(QZ�1Z1)� a12 = Z�NW �l1Wl1Ĝ+W �l2Wl2Z�D � 
(QZ�1 (Y + ĜX))� a22 = Ĝ�W �l1Wl1Ĝ+W �l2Wl2 � 
(Q(Y + ĜX)�(Y + ĜX))� Q = 1=(X�W �r1Wr1X + Y �W �r2Wr2Y )Proof. In order to ease the establishment of the proof, we rewritethe weighted matrix Tw(z; Æ(z)) �= WlT (G(z; Æ(z)); C(z))Wr , using thede�nition of the 
losed-loop transfer matrix T in (3.3) and the expressionof G(z; Æ(z)) in (8.22):Tw(z; Æ(z)) = � Wl1X(Ĝ+ ZNÆ(z))Wr1 Wl1Y (Ĝ+ ZNÆ(z))Wr2Wl2X(1 + ZDÆ(z))Wr1 Wl2Y (1 + ZDÆ(z))Wr2 �Y + ĜX + (XZN + Y ZD)Æ(z) (9.15)It is important to note that Tw(z; Æ(z)) is of rank one. As a result (9.15)
an be written as follows:Tw(z; Æ(z)) = 0� Wl1(Ĝ+ZN Æ(z))Y+ĜX+Z1Æ(z)Wl2(1+ZDÆ(z))Y+ĜX+Z1Æ(z) 1A� XWr1 YWr2 � (9.16)with Z1 = XZN + Y ZD. Using the above introdu
ed notations, we 
annow state that proving Theorem 9.3 is equivalent to proving that thesolution 
opt of the LMI problem (9.14), evaluated at !, is su
h that:p
opt = maxÆ(ej!)2U(!) �1(Tw(ej!; Æ(ej!)))()
opt = maxÆ(ej!)2U(!) �1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!)))where U(!) = fÆ(ej!) j Æ(ej!)TR(!)Æ(ej!) < 1g, and where �1(A) and�1(A) denote the largest singular value and the largest eigenvalue of A,respe
tively.An equivalent and 
onvenient way of restating the problem of 
om-puting maxÆ(ej!)2U(!) �1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!))) is as follows:
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 su
h that�1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!)))� 
 < 0 8Æ(ej!) 2 U(!):Sin
e Tw(ej!; Æ(ej!)) has rank one, we have:�1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!))) � 
 < 0()0� Wl1(Ĝ+ZN Æ(ej!))Y+ĜX+Z1Æ(ej!)Wl2(1+ZDÆ(ej!))Y+ĜX+Z1Æ(ej!) 1A�0� Wl1(Ĝ+ZNÆ(ej!))Y+ĜX+Z1Æ(ej!)Wl2(1+ZDÆ(ej!))Y+ĜX+Z1Æ(ej!) 1A 1Q � 
 < 0()0BB� Wl1(Ĝ+ZNÆ(ej!))Y+ĜX+Z1Æ(ej!)Wl2(1+ZDÆ(ej!))Y+ĜX+Z1Æ(ej!)1 1CCA�� I2 00 �
Q �0BB� Wl1(Ĝ+ZN Æ(ej!))Y+ĜX+Z1Æ(ej!)Wl2(1+ZDÆ(ej!))Y+ĜX+Z1Æ(ej!)1 1CCA < 0 (9.17)where Q = 1=(X�W �r1Wr1X + Y �W �r2Wr2Y ). By pre-multiplying (9.17)by (Y + ĜX + Z1Æ(ej!))� and post-multiplying the same expression by(Y + ĜX + Z1Æ(ej!)), we obtain:0� Wl1(Ĝ+ ZNÆ(ej!))Wl2(1 + ZDÆ(ej!))Y + ĜX + Z1Æ(ej!) 1A�� I2 00 �
Q �0� Wl1(Ĝ+ ZNÆ(ej!))Wl2(1 + ZDÆ(ej!))Y + ĜX + Z1Æ(ej!) 1A < 0(9.18)whi
h is equivalent to the following 
onstraint on Æ(ej!) with variable 
� Æ(ej!)1 ��� a11 a12a�12 a22 �� Æ(ej!)1 � < 0 (9.19)with a11, a12 and a22 as de�ned in (9.14). Sin
e Æ(ej!) is real, it 
an beshown that (9.19) is equivalent with (Æ(ej!))z }| {� Æ(ej!)1 �T � Re(a11) Re(a12)Re(a�12) Re(a22) �� Æ(ej!)1 � < 0 (9.20)



Robustness analysis of L 139This last expression is equivalent to stating that �1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!))) � 
 < 0 for a parti
ular Æ(ej!) in U(!). However, thismust be true for all Æ(ej!) 2 U(!). Therefore (9.20) must be true forall Æ(ej!) su
h that �(Æ(ej!))z }| {� Æ(ej!)1 �T � R(!) 00 �1 �� Æ(ej!)1 � < 0 (9.21)whi
h is equivalent to the statement \Æ(ej!) 2 U(!)".Let us now re
apitulate. ComputingmaxÆ(ej!)2U(!) �1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!))) is equivalent to �nding the smallest 
 su
h that  (Æ(ej!)) <0 for all Æ(ej!) for whi
h �(Æ(ej!)) < 0. By the S pro
edure [55,17℄, this problem is equivalent to �nding the smallest 
 and a posi-tive s
alar � su
h that  (Æ(ej!)) � ��(Æ(ej!)) < 0, for all Æ(ej!) 2R2�1, whi
h is pre
isely (9.14). To 
omplete this proof, note that sin
e�1(Tw(ej!; Æ(ej!))�Tw(ej!; Æ(ej!))) = �21(Tw(ej!; Æ(ej!))), the valuemaxÆ(ej!)2U(!) �1(Tw(ej!; Æ(ej!))) at ! is equal to p
opt, where 
opt isthe optimal value of 
. �9.3 Simulation exampleTo illustrate our results, we present an example of 
ontroller validationbased on an un
ertainty region Lol design using a PE identi�
ation pro-
edure with sto
hasti
 embedding assumptions in open-loop. The open-loop model G(z; �̂), 
enter of Lol, is used to design the \to-be-validated"
ontroller C. This 
ontroller is then validated for stability using thepro
edure of Se
tion 9.1, and for performan
e using the pro
edure ofSe
tion 9.2.Identi�
ation step. Let us 
onsider the same true system G0 asin [47℄: y(t) = G0z }| {0:0355z�1 + 0:0247z�21� 1:2727z�1 + 0:3329z�2 u(t) + e(t)where e(t) is a white noise with a varian
e equal to 0.005. The samplingtime is 1 se
ond. We simulate this system 
olle
ting 300 data from whi
h



140 Robustness analysis of Lwe use the last 50 for least-square model �tting ( the �rst 250 are usedto get rid of initial 
ondition e�e
ts). As in [47℄, we 
hoose a se
ondorder Laguerre model of the form (the pole of the Laguerre model is
hosen near the dominant pole of G0):G(z; [�1; �2℄T ) = 0:9063 �1z�11� 0:8187z�1 + �2z�1(0:7311 � 0:8954z�1)(1� 0:8187z�1)2Using the 50 data, the identi�ed parameters are:�̂1 = 0:1129 �̂2 = �0:0689Design of the un
ertainty region Lol. The un
ertainty region Lol is
onstru
ted using the 
lassi
al assumptions and the 
lassi
al pro
eduredes
ribed in Se
tion 8.3, i.e. the unmodelled dynami
 sto
hasti
 pro
essis assumed to have impulse response 
oeÆ
ients �n whose varian
e diesat an exponential rate: E(�2n) = ��n, with � and � determined by themeasured data. The parameters � and � and the varian
e �2 of thewhite noise e(t) are estimated using the maximum likelihood te
hniquedes
ribed in [47℄. This estimation delivers:�̂ = 19:96; �̂ = 0:002; �̂2 = 0:006:The number L in (8.4) is 
hosen equal to 15 as in [47℄. These valuesallow us to design a frequen
y domain un
ertainty region Lol made up ofellipses at ea
h frequen
y in the Nyquist plane. The desired probabilityfor the presen
e of G0 in Lol is here 
hosen equal to 0.9. This un
ertaintyregion is represented in Figure 9.1. Even though G0(ej!) seems at ea
hfrequen
y to lie in the ellipses, it is to be noted that, at very few ones,G0(ej!) lies slightly outside. This phenomenon 
an be explained bythe nonlinear optimization that delivers the estimate of the sto
hasti
parameters, by the very few data used to design the un
ertainty regions,but also by the 
hosen probabilisti
 framework.Control design. The se
ond order Laguerre model G(z; [�̂1; �̂2℄T ) is
hosen as model Gmod for 
ontrol design. From this model Gmod, wehave designed a 
ontroller with a lead-lag �lter:C(z) = 5:2314 � 3:8667z�11� 0:6z�1 :
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Figure 9.1: Ellipses of Lol at some frequen
ies, G(ej!; [�̂1; �̂2℄T ) (dashed)and G0(ej!) (dashdot) in the Nyquist planeWith this 
ontroller, the designed 
losed-loop [C Gmod℄ has a phasemargin of 85 degrees. The 
ut-o� frequen
y !
 is equal to 0.5. Beforeapplying this 
ontroller C(z) to the true system, we verify whether ita
hieves satisfa
tory behaviour with all plants in an un
ertainty regionLol (and therefore also with the true system G0).Validation of C for stability. We 
an use the pro
edure presentedin Se
tion 9.1 to 
he
k whether C stabilizes all plants in Lol. For thispurpose, we 
onstru
t the row ve
tor MLol(z) de�ned in Theorem 9.1and we 
ompute the 
orresponding stability radius �(MLol(ej!)T�1(!))at all frequen
ies. The stability radii are plotted in Figure 9.2. Themaximum over all frequen
ies in [0 �℄ is 0:4577 < 1; thus, we 
on
ludethat C(z) stabilizes all plants in Lol (and therefore also the true systemG0). In other words, C is validated for stability.Validation of C for performan
e. In order to verify that C givessatisfa
tory performan
e with all plants in Lol, we 
hoose the sensi-tivity fun
tion T22 as performan
e indi
ator, and we 
ompute, at ea
hfrequen
y, the largest modulus tLol(!; T22) of T22. This 
an be doneby 
omputing JWC(Lol; C;Wl;Wr; !) using Theorem 9.3 with the par-ti
ular weights Wl = Wr = diag(0; 1). The worst 
ase modulus of allsensitivity fun
tions over Lol is represented in Figure 9.3. It is 
ompared
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OmegaFigure 9.2: �(MLol(ej!)T�1(!)) in [0 �℄with the sensitivity fun
tions of the designed 
losed loop [C Gmod℄ andthat of the a
hieved 
losed loop [C G0℄. From tLol(!; T22), we 
an �ndthat the worst 
ase stati
 error (=tLol(0; T22)) resulting from a 
onstantdisturban
e of unit amplitude is equal to 0.2889, whereas this stati
error is 0.2438 in the designed 
losed-loop and 0.2267 in the a
hieved
losed loop. Using tLol(!; T22), we 
an also see that the bandwidth of!
 = 0:5 in the designed 
losed-loop is almost preserved for all 
losedloops with a plant in Lol sin
e tLol(!; T22) is equal to 1 at !
 ' 0:33.The di�eren
e between the resonan
e peak of the designed sensitivityfun
tion (i.e. max! k T22(Gmod; C) k= 1:1626) and the worst 
ase rea-sonan
e peak a
hieved by a plant in Lol (i.e. max! tLol(!; T22) = 2:45)also remains small. Note that the a
tually a
hieved resonan
e peak (i.e.max! k T22(G0; C) k) is equal to 1.3930. A last remark is to note that thea
tually a
hieved sensitivity fun
tion is at very few frequen
ies slightlyabove the template tLol(!; T22). This is due to the fa
t that G0(ej!) liesslightly outside Lol at those frequen
ies.We may therefore 
on
lude that the 
ontroller C is validated forperforman
e sin
e the di�eren
e between the nominal and worst 
aseperforman
e level remains very small at every frequen
y. With su
hstability and performan
e analysis results, one would 
on�dently applythe 
ontroller to the real system, assuming that the nominal performan
e
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tion T22(Gmod; C) (dashed) and a
tually a
hieved sensitivity fun
-tion T22(G0; C) (dashdot)is judged to be satisfa
tory.9.4 Con
lusionsIn this 
hapter, we have developed the robust stability and robust per-forman
e analysis tools for the un
ertainty region L. This un
ertaintyregion L is the un
ertainty region obtained after a PE identi�
ationpro
edure with biased model stru
ture and with sto
hasti
 embeddingassumptions. The robust stability analysis tool for L is a ne
essary andsuÆ
ient 
ondition for the stabilization of all plants in L by a given
ontroller. The robust performan
e analysis tool is an LMI pro
edurethat exa
tly 
omputes the worst 
ase performan
e a
hieved by a given
ontroller over all plants in L. It is to be noted that we 
an 
omputethe worst 
ase 
hordal distan
e at ea
h frequen
y for the set L (see e.g.our paper [10℄). However, the maximum of these worst 
ase 
hordal dis-tan
es over the frequen
ies is not guaranteed to deliver the worst 
ase�-gap sin
e we do not have a similar result for L as Lemma 3.1 for D.
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Chapter 10Con
lusions10.1 Contribution of this thesisThis thesis presents a framework to 
onne
t PE identi�
ation with Ro-bust Control theory. The proposed framework has been initially pre-sented for PE identi�
ation with an unbiased model stru
ture, but hasbeen extended, in the last part of the thesis, to PE identi�
ation with abiased model stru
ture in the 
ase where this model stru
ture is linearlyparametrized.First, we have shown that PE identi�
ation with unbiased modelstru
ture yields an un
ertainty region D 
ontaining the true system ata 
ertain probability level. We have developed a pro
edure to 
omputesu
h un
ertainty region for open-loop identi�
ation, di�erent types of
losed-loop identi�
ation methods, but also the MEM approa
h. Thisun
ertainty region takes the form of a set of transfer fun
tions whoseparameter ve
tor is 
onstrained to lie in an ellipsoid. We have then de-veloped robustness tools that are adapted to this un
ertainty set. The�rst robustness tool is a ne
essary and suÆ
ient 
ondition for the stabi-lization of all plants in D by a given 
ontroller. The se
ond robustnesstool is an LMI pro
edure to 
ompute exa
tly the worst 
ase performan
ea
hieved by a 
ontroller over all plants in D. We have also introdu
eda measure of the un
ertainty set D that is dire
tly 
onne
ted to a setof model-based 
ontrollers that stabilize all plants in this set D. Thismeasure is used to assess the quality of the un
ertainty set with respe
tto robustly stable 
ontrol design. From that measure, we have also de-du
ed guidelines for the design of the identi�
ation experiment, paving145
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lusionstherefore the way to a new resear
h �eld i.e. PE identi�
ation for robust
ontrol.We have also developed results in order to represent D in the Nyquistplane. Our results are restri
ted to linearly parametrized un
ertainty re-gions D. We have shown that the mapping between the parameter spa
eand the Nyquist plane is not bije
tive and that the image of D in theNyquist plane 
ontains therefore more plants than D.In the last part of this thesis, we have extended our framework to the
ase of PE identi�
ation with a biased model stru
ture, provided thatthis model stru
ture is linearly parametrized. For this purpose, we haveused the sto
hasti
 embedding assumptions. Our �rst 
ontribution hasbeen to propose a proper way to design the un
ertainty region dedu
edfrom sto
hasti
 embedding in open-loop. We have then extended thesto
hasti
 embedding te
hnique to 
losed-loop identi�
ation and given ageneral expression of the un
ertainty set L delivered by PE identi�
ationwith sto
hasti
 embedding assumptions that is valid as well in open-loopas in 
losed-loop. This un
ertainty region L takes the form of a set oftransfer fun
tions parametrized by a transfer ve
tor whose frequen
yresponse is real and 
onstrained to lie in an ellipse at ea
h frequen
y.We have then developed the robustness tools adapted to this un
ertaintyset L i.e. a ne
essary and suÆ
ient robust stability 
ondition for L andan LMI pro
edure to 
ompute the worst 
ase performan
e in that setL. It is to be noted that a te
hni
al problem has prevented us from
omputing the worst 
ase �-gap for L.10.2 Open questionsHave we 
losed the gap between PE identi�
ation and Robust Controltheory. Of 
ourse, not ! We have 
ontributed to redu
e it, but thereremain some open problems. Some are te
hni
al, the others are openresear
h �elds.10.2.1 Open te
hni
al problemsLet us begin by the problems we have just mentioned at the end ofSe
tion 10.1. We still need to �nd a pro
edure to derive the worst
ase �-gap in the un
ertainty region L obtained by sto
hati
 embeddingfrom the worst 
ase 
hordal distan
es at ea
h frequen
y. The problem is
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lusions 147here that a result in that sense exists for parametri
 un
ertainty regions(like D) but not for frequen
y domain un
ertainty regions (like L). InChapter 4, we have also mentioned that we are 
urrently investigatingthe possibility to 
ompute a measure for robust stability �min(D) (or�min(L)) based on the ne
essary and suÆ
ient result of that 
hapterin order to improve the result of Chapter 3 that is based on suÆ
ient
onditions only. Another and important te
hni
al problem is the ex-tension to Multiple Inputs Multiple Outputs (MIMO) systems. Indeed,the result of this thesis has been presented in the SISO 
ontext. Whilemany of the new 
on
epts 
arry over to the MIMO 
ase, the extensionof a number of our te
hni
al and 
omputational results is by no meanstrivial.10.2.2 Open resear
h �eldsIn Chapter 3, we have paved the way to a new resear
h �eld i.e. PE iden-ti�
ation for robust 
ontrol. We have indeed 
hara
terized what qualityan un
ertainty set dedu
ed from PE identi�
ation must possess for it tobe tuned for robustly stable 
ontrol design based on the model, and wehave drawn guidelines for the design of the identi�
ation experiment.Plenty of work is still to be a
hieved in this dire
tion. In Se
tion 10.2.1,we have already stated the problem that follows from the fa
t that ourresult is based on a suÆ
ient 
ondition only. A lot of resear
h has alsoto be done in order to apply, in pra
ti
e, the proposed guidelines for thedesign of the identi�
ation experiment. Moreover, our result is restri
tedto stability purposes. It will be interesting to seek a robust performan
emeasure for the un
ertainty sets delivered by PE identi�
ation.It would also be interesting to integrate our framework in one of theiterative s
hemes [24, 90, 75℄ that alternate 
ontrol design and identi�-
ation steps (for example on a real-life plant).Another possible development may be a pro
edure to apply when one(or both) 
ontroller validation pro
edure (stability and/or performan
e)has failed with respe
t to an un
ertainty set D1. We have then twopossibilities:� We perform a new identi�
ation experiment yielding a new un
er-tainty set Dbis. When we have this new un
ertainty set, we try1or L
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lusionsagain to validate the 
ontroller with respe
t to this new un
ertaintyset Dbis.� We design a new 
ontroller and we try to validate this new 
on-troller with respe
t to the un
ertainty set D.In the �rst 
ase, we are ba
k in the problem of designing the validationexperiment in order to obtain an un
ertainty set that is tuned for robust
ontrol design. In the se
ond 
ase, we fa
e the problem of designing arobust 
ontroller with respe
t to the un
ertainty sets D or L. For thispurpose, �-analysis 
an be investigated. However, this te
hnique hasthe drawba
k of not being guaranteed to 
onverge.Another possible extension is the extension of our framework to PEidenti�
ation with a biased model stru
ture in the general 
ase where themodel stru
ture is not linearly parametrized. Finally, another possibleresear
h �eld is the extension of the results of Chapter 7 to the general
ase of nonlinearly parametrized un
ertainty regions D.



Appendix AAppendi
es to Chapter 7A.1 Proof of Lemma 7.1The inverse of the blo
k matrix P 
an be written (see e.g. [92, page 22℄)P�1 = � K11 K12KT12 K22 �where K11 = P�111 + P�111 P12��1P T12P�111 , K12 = �P�111 P12��1, K22 =��1 and � = P22 � P T12P�111 P12.Using these notations and introdu
ing the ve
tor z = K�122 KT12x+ �x,we have the following equivalen
es:� x�x �T P�1� x�x � < 1 () xT (K11 �K12K�122 KT12)x+ zTK22z < 1() xTP�111 x+ zTK22z < 1 (A.1)Using this last expression, we 
an now write that1. if (xT �xT )T 2 Ux�x, then xTP�111 x < 1. Indeed� x�x �T P�1� x�x � < 1 =) xTP�111 x < (1� zTK22z) < 12. if xTP�111 x < 1 then there exists �x su
h that (xT �xT )T 2 Ux�x. In-deed, take as �x, the ve
tor �x su
h that z = 0 (i.e. �x = �K�122 KT12x).Then, � x�K�122 KT12x � 2 Ux�x.This 
ompletes the proof. �149



150 Appendi
es to Chapter 7A.2 Proof of Theorem 7.2We �rst prove that the inverse image of Ux by the mapping (7.12) isgiven by (7.20). This follows dire
tly from:xTP�1x x < �() yTT TP�1x Ty < � (A.2)The volume Cy is thus the inverse image of Ux sin
e y has to satisfy theright-hand side of (A.2) in order to have x in Ux.It follows from RC = T TP�1x T 2 Rk�k with T of rank n < k thatRC has k � n null eigenvalues and that the 
orresponding eigenve
torsare in the null-spa
e of the mapping T .Theorem 7.1 and the de�nition (7.19) of Cy show that Uy is in
ludedin Cy. Indeed, we know by Theorem 7.1 that ea
h y in Uy has an image(i.e. Ty) in Ux. Therefore, ea
h y in Uy lies in Cy de�ned by (7.19). �



Appendix BPE identi�
ation withsto
hasti
 embeddingassumptions in open loopIn this appendix, we give some details about the results of PE identi-�
ation with sto
hasti
 embedding assumptions that are presented inProposition 8.1. The results presented below 
an be found in [47℄. Inorder to ease the notations, we will assume that H0 = 1. However, it isnot a requirement as shown in [47℄.A

ording to Proposition 8.1, a PE identi�
ation pro
edure withAssuptions 8.1 delivers a model G(z; �̂) 2M and an estimate P� of the
ovarian
e matrix C� of the ve
tor ~� parametrizing the error betweenG0 and the identi�ed model G(z; �̂).
B.1 Identi�
ation of a model in MIn order to identify a model G(z; �̂), we 
olle
t N input signals u(t) andthe N 
orresponding output signals y(t) generated by (8.3). Just as wasdone in Se
tion 2.1.3, we 
an write the relation between the N signalsy(t) and the N signals u(t) as follows using the approximation (8.4):151



152 PE identi�
ation with sto
hasti
 embedding assumptions...Yz }| {0BB� y(1)y(2):y(N) 1CCA = �z }| {0BB� �(1)�(2):�(N) 1CCA �0 + 	z }| {0BB�  (1) (2): (N) 1CCA � + Ez }| {0BB� e(1)e(2):e(N) 1CCA (B.1)where �(t) 2 R1�k (t = 1:::N) is equal to �(z)u(t) and  (t) 2 R1�L(t = 1:::N) is de�ned by: (t) = � u(t� 1) u(t� 2) ::: u(t� L) � :Sin
e the predi
ted output of a system G(z; �) inM is given by ŷ(t; �) =�(t)�, the estimate �̂ minimizing the 
riterion (2.3) is:�̂ = (�T�)�1�TY = QY: (B.2)Let us now analyze the mean and the 
ovarian
e of the estimate �̂.These values will be used in the sequel in order to express the matrix C�de�ned in (8.6). The mathemati
al expe
tation E �̂ of �̂ 
an be 
omputedas follows: E �̂ = E [(�T�)�1�T Yz }| {(��0 +	� +E)℄= �0 +QE(	� +E)= �0 (B.3)The fa
t that the unmodeling is 
onsidered as the realization of a zeromean sto
hasti
 pro
ess independent of the noise e(t) has as 
onsequen
ethat the estimate �̂ has a mean equal to �0. Using the same property,the 
ovarian
e matrix C of the estimate �̂ 
an now be derived as follows:C = E [(�̂ � �0)(�̂ � �0)T ℄ = E [(Q(	� +E))(Q(	� +E))T ℄= Q(	C�	T + �2IN )QT ; (B.4)where �2 is the varian
e of the white noise e(t) and C� �= E(��T ) is,a

ording to Assumptions 8.1, equal toC� = diag(��; ��2; :::; ��L) (B.5)



PE identi�
ation with sto
hasti
 embedding assumptions... 153B.2 Error between G0(z) and G(z; �̂)After having identi�ed a model G(z; �̂), we 
an now express the error be-tween the true system G0 and the identi�ed model. For this purpose, letus rewrite G0(z) and the model G(z; �̂) as follows using (8.2) and (8.4):G0(z) = G(z; �0) + LXn=1 �nz�n = � �(z) �(z) �� �0� � (B.6)G(z; �̂) = � �(z) �(z) �� �̂0 � (B.7)The di�eren
e between these two transfer fun
tions is thus equal toG0(z)�G(z; �̂) = � �(z) �(z) � ~�z }| {� �0 � �̂� � (B.8)If we assume that the impulse response 
oeÆ
ients �n of G�(z) areGaussian distributed, ~� 2 R(k+L)�1 has (asymptoti
ally) a Gaussiandistribution. Using (B.3) and the fa
t that E(�n) = 0, the mean of thisGaussian distribution is zero. The 
ovarian
e matrix C� 
an be dedu
edfrom (B.4), (B.5), and the fa
t thatE [(�0 � �̂)�T ℄ = E [(�Q	� �QE)�T ℄ = �Q	C�The 
ovarian
e matrix C� is thus equal to:C� = � C �Q	C��C�	TQT C� � :The matrix C� is unknown sin
e the varian
e �2 of the white noise e(t)and C� are unknown. However, we 
an obtain estimates �̂2, �̂ and �̂ ofthe sto
hasti
 parameters �2, � and � by using a maximum likelihoodte
hnique [47℄. As a 
onsequen
e, we also obtain an estimate P� of C�:P� = � P� �Q	Ĉ��Ĉ�	TQT Ĉ� � :where Ĉ� = diag(�̂�̂; �̂�̂2; :::; �̂�̂L) and P� is the estimate of the matrixC given by P� = Q(	Ĉ�	T + �̂2In)QT
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